
HD-A138 433 A CANDIDATE PROGRAMMING LANGIJAOE(U) AIR FORCE INST OF 1/2
TECH WRIGHT-PATTERSON RFB OH SCHOOL OF ENGINEERING
R JENNINGS DEC 83 AFIT/GA/EE/83D-1

UNCLSSIFIED F/G 92 N

5'Q.

t .k -
j j j/

111.16

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

is 2

a. - K7. 77 . . . 7.

1Z

~Of

A CANDIDATE PROGRAMMING
LANGUAGE

-

THESIS

Richard Jennings
Capt USAF

A FI -T/G A /EE/83D
-1

DI
IDISIUDUTION STATEMENT A ~ EL ECTE

Apptoved foz public 4 1 wwF
Distribution Unlimited FE 829 1984

0..DEPARTMENT OF THE AIR FORCE T B
CD AIR UNIVERSITY

__ AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

.. 84 02 29 0413

*.7/ J01

uP AFIT/GA/EE/83. /

'U

A CANDIDATE PRooIAUNG
* LANGUAGE

THES13

Richard Jennings
Capt USAf

AFIT/GA/EE/83D- I

DTIC
S IF-LECTE

FEB 29 198IB

Approved for Public Release; Distribution Unlimited

L%-

~~~............ ........ ... ;...*.:*.. U -.:. ::,.p., ,*:,/ t,, ,' +,.;.4 .. .- . ++.,.: .-.. ,

* 4 U 9 * f "U ... . ..



AFIT/A/29/83D-1

A Candidate Programming Language

Presented to the Faculty of the School of ngineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Dqpree of

Waster of' Sc1ence

J.%

by

Richard Jennings

Capt USAF

Graduate Astronautical agineering

A, December 1983

Approved For Publio Release; Distribution Unlimited

,'4"', i . "2



This thesis has been written to provide a template for a new effort
*to harness automation into productive work. Failing this, it should at

least serve as a cogent argument to encourage new thinking In the field
of computer science. Failing even this, it AM serve to document one
frustrated user's view of utopia.

The candidate language has been named D for a number of reasons.
First, the successor to C (aka the next widely used language) was
presaged to be either D or P by the C authors [itohie:2019 78]. Since
C strongly influenced D, the candidate language could obtain its name
for this reason alone. The ADA language also influenced the D
extensions to C, in function if not form. D can be considered a
functional equivalent of ADA without all the Accreted Aggrandizement.

44ADA without the A's is D.
The suggested method of reading this thesis is to read interesting

sections first. Each section is relatively self contained. Although a
annlEmA understanding of D must be gleaned from the entire thesis there
is a lot of redundane. The motivation was to permit readers who like
hardware to whet their interest in that section; readers who like C to
read the C comparison section first; and readers who like to see code to
start with the examples. So primed, the remainder of the thesis should
be more palatable.

For those who do believe that new computer architectures are
required, and have a specific approach defined -- this thesis is not for
you... got to work.

As with most engineering endeavors, this thesis builds extensively
upon four previous bodies of work. First, and foremost, are the ideas
and motivations of John Von Neumann as documented in his collected works
(Von Neumann 63]. Although the proposed architecture is not what might
be classified as a "Von Neumann" architecture, I submit that it is very
similar to what he might have proposed to exploit the capabilities of
current (1983) microelectronic fabrication capabilities. His concepts
of Morgans* is maintained, and extended in this age of quick and easy
transplants (Von Neumann:20 63]:

.A For the purposes of our discussion we shall distinguish the
following organs of a digital computer: The memory, i.e. the
part of the machine devoted to the storage of numerical data;
the arithmetic organ, i.e. that part in which certain of the
familiar processes of arithmetic are performed; the logical
control, i.e. the mechanism which comprehends and causes to be
performed the demands of the human operator; and the input-
output organ which is the intermediary between the machine and
the outside world.

Second is the work of Christopher Strachey and Dana Scott, who
attempted to describe the semantics of languages, as contained in

ASMAn j. MM Seatt-Stracbev App roac Pro g-aina

S. ii



La a su Theory [Stoy 77J. This work defines what the purpose of a
programming language is, and what is important within it. While time

.- was too short to attempt to use decotational semantics to anchor D to a
solid axiomatic base, this work did motivate many of the design
decisions in the hope that D might be anchorable at some future time.
The most obvious feature of the language so derived is the approximate
equality within the language of dynamic and passive objects.

Third is the C language. Strachey worked with several
collaborators on a language called CPL, which never published or
implemented (Stoy:xxiv 77]. A variant, BCPL, was implemented by Martin
Richards (Richards 82] and has established itself as an important
implementation language. In 1970, Ken Thompson developed and
implemented B, differing from BCPL mainly in syntax because of the small
size of the first B compiler (4K 18-bit words) [Ritchi.:1992 78]. C
evolved from B circa 1972, differing by the introduction of types,
motivated by ALGOL 68 and PASCAL [Ritchie:1996 78].

Last and (perhaps not) least is the DoD sponsored Ada language
development effort [DARPA 80, Ichbiah 79a, Ichbiah 79b]. The work was
important in a positive sense; many important concepts were brought out
of the esoteric computer science journals and introduced to language
users. The DoD most certainly got an excellent engineering development
version of a potentially acceptable language for their investment.
However, the decision was made to standardize upon a language which many
felt contained flaws [Boute 80]. One respected language designer even
took his opportunity to give the ACM Turing award lecture to lambast the
United States Department of Defense [Hoare:424-5 81]:

In this last resort, I appeal to you, representatives of the
progra-ming profession in the United States, and citizens
concerned with the welfare and safety of mankind: do not allow
this language [Ada] in its present state to be used in
applications where reliability is critical, is, nuclear power
stations, cruise missiles, early warning systems, anti-
ballistic missile defense systems. The next rocket to go
astray as a result of a programing language error may not be
an exploratory space rocket on a harmless trip to Venus. It
may be a nuclear warhead exploding over our own cities. An
unreliable programing language generating unreliable programs
constitutes a far greater risk to our environment and to our
society than unsafe cars, toxic pesticides, or accidents at
nuclear power stations.

Professor Hoare is now hard at work on his own language, OCCAM, in
collaboration with IMOS Ltd. (Taylor 82].

In a sense, the candidate language D, ±1 a production version of
Ada. Put another way, the D architecture will support Ada programs more
efficiently than current architectures.

Finally I would like to acknowledge two people who made this thesis
possible. The first is Cecil Gwinn who convinced me that currently
available computers were n the greatest technological innovation since
sliced bread by consistently obtaining accurate results faster with his
HP calculator, and some quick analysis, than I could obtain on a DEC

"4. System 10. He also introduced me to recreational mathematics,
demonstrating mathematics has applications beyond terrorizing

' P



engineering students and obfuscating intuitive resultsl Needless to
~.. say, I would have been unable to unlock many of the ideas in Stoy'3 text

without his helpful insights.

The second person who should receive credit for this thesis is Harold
Carter, who despite great risk agreed to advise this thesis, and who
permitted me the flexibility to avert impending catastrophes.

Richard Jennings
Dayton Ohio

November, 1983

.5

Accesso For

SIS 
0"' G A&IDTIC TA13 r

unannounced 0

Justification

By

AvaliabilitY CodeS

Sand/or

Dist Spvola2.

* A1

oit
Il .,

b

* -



Preface .. . . ....... -

List of Figures ...................................................... vii

List of Tables.,....s.....o.........................................viii

Abstractc.......... O e... v.... .. .. . ...

i. *nr d ot o .. . . .. . . . ..................................

. Chratectural Objetive .......................... o ... ......... 1

Motivation ......... ..... .. ** ............ ... ..... ........ 10
User Characterization .... o.................................12
User PerspectiLve ........ .......... .... . ..... ...o........... 14
Implementation Constraints .......... o........o........o......... 18
Priorities ... ........................... 1

III. Atpproach to Algorthlm Specification~ ...................... .... .21

Introduction to Objects .................................... 22
Introduction to the
Programing Method. . ... . ... . .. .. o . ..... . .o. .. . .. . .. .. o. .23

PrIAnf d tor ethod...........................................23
Four Important Files ................................. o.. 25
Definitions ...... . . ................. . 4.. ... ..... ...... o26
Declrations o .... o ......... .... ...... . ........ ..... o28
Aotion.oo ......... o... -o.... t o...... o oo.......... . .. . .. . . ...... 30

Context.... ..... ............ ....... o .... ............... 34

IV. An Introductory Eample .. i..ito............................. 37

V. Langu oe DesOrptton ..... i...... ..o............................ 5

Notation Dcati....... ................ 45
Symbols .... io.......... ............. ................... 6

Quoted Lterals ............................................. 52
Integers ........................................ o............. 52
Conme nts ............... 0.0................. . . ...... s........ 53
Expressions ................................ *...53

Blocks .... .o........ .................................... o... 57
Scalars and Structure Defintticns ... o.............. o........... 60
Function and Operator Definitions ....................... *... o62
StorageDeartos.....................6
File Organization ............................................ 67
Linkage... ..... ..... o....... .................. o............ 6 7

. Bundles$ or Encapsulated Linkages ................. ........ o... 69

v



S -r - % a . -.. -I.N IV

VI. Algorithm Example: A Vector Dot Product ......................... 70

* ~~~~~~~The Vector Dot Product. . .. . ... .. .. . .. ... . .. .. ... .. .. . ........... 7
The File Hierarchy. ............ .. ............................. 71
The Vector Dot Product Algorithm ............................. 72
Definition of the Class "Vector. .  @4
Components and Compatible Operators .......................... 75
Hardware Support ............................................. 78iiSum ea ................... .. ...... o....................o..... T9

VII. Programming Support Req.irements .... ...... ... .... 80
! rm.,..o ........ 0*00000 ....... 00000*00000008

vadwave nstantiation ................ ...................... .8
Intertask Coumnication .... ..... ............................ .85
Summary. ..... . ..... ... o..... o....... o.o..... .. .. .... .. ..... 86

* VIII. Hardware Requirements ....... o ......... o ............... o ... ..... 87

Problem 1 : Kernal Definition........ ..... ... o. ....... . .... 87
Expression Evaluation. .... . ..... ... . .. ... o. ....... .. 89
Problem 2: Structured Control........... . ..... .... .......... 93
B lock Execution ....... .. o . ... o...o-o..o93

Problem 3: VLSI Exploitation...... . . .... o ... o.. .... o.... o97
Actor Execution .... o...o.............. ........................ 98

IX. Language Comparison ............................................ 102

•* . conelusLon8 .......................................... 0.... .... 11

Bibliography .... .. ... o.............................................l21

Appendix: The D Language Syntax ... ... ..... .... ..... . ... ............. 123

Vita- o ... oo............... ...... ...... ....... ..... .......... 133o

* viV/

4~I



* 7 -7-. 7777 7 A 77'7p P W7- V-,

,*. List of Fizures.

1 : File Hierarchy ..................................................... 72

2: Language Formats ........................... 0.......... .......... 80

3: Storage Format Conversion .......................................... 82

4: A Multiprocessing Node................... ..... ........ ... 86

5: Expression Evaluation..... .......... ... ... .......... . ........... .. 91

6: Block Execution ................... o ....... .. .... ..... ..... .95
7: Actor" Execution ....... o........ o.... o.......... .. ... ............. 99

vtat

,I ' . . .,.. ' . ,.. ' m -% ' % ,, ,, . '' '..



1: Description of Punctuation Symbols.. ........ ........... .419

II: Control Statement Comparison: C va D ............................ 112

viii



, I/

Conventional computer architectures are obsolete. They are
performance limited, unreliable and bard to program. In addition, they
are able to make very inefficient use of the currently available
microelectronic technology.

This state is perpetuated by the attempt to seek new languages, new
operating systems, and new hardware indeopndently/the desire to
maintain compatibility with existing systems; and the desire to design
with integrated circuits (VLSI) as tiny TTL. This mold is broken by the
description of an architecture in which the language, software, and
hardware are all designed synergistically, constrained only by the
characteristics of the users of automation: people.

A candidate language is described and compared with C. Some
characteristics of a program support environment are suggested. The
hardware structures implied by the proposed architecture are described.
Finally, two examples are provided which demonstrate the language.

While the next computer architecture to be used for 10 years is not
described, enough ideas are described in detail to provide a stimulus
and direction to researchers who have been convinced by contemporary
computer systems that A&I A. AS= MI R.-

ix



*'ROUTI.

The Air Force, and other sophisticated users of information

processing equipment, are contemplating using antediluvian architectures

to meet future information processing requirements. Information

processing systems are being tasked to accomplish fundamentally new and

different objectives; consequently, fundamentally new and different

architectures should be expected to organize these new systems.

Contemporary computer architectures are unsuitable for future

information processing requirements. Simply, they do not provide

sufficient structure to permit the large information processing systems

to be sufficiently organized.

The Z91 of information processors will be vastly different in the

future, as will be their relationship to Users. They will transition

from slaves to partners. Users will evolve from programming experts.

What users Will evolve to is described in the next section. Past Users,

specifically professional programmers, Possessed a relatively high

degree of computer literacy, relative to the complexity of past

computers. Computers essentially were, and are, Used as human computers

before them: to calculate results from dfinedj algorithms.

Host future users will expect information processors to deduce

theories from data. They will not have a solid notion of how

information processors work in terms of fundamental physics, and of the

failure modes they should be wary. The future architectures Must assume

responsibility to maintain the information model they present the User;

during algorithm development as well as during operation.

The responsibility of information processors will also radically

change in the next few years. They will regularly assume not only liJa.



ciia roles with respect to individuals, but c

roles with respect to nuclear weapons and space operations; to name two

applications of direct interest to the Air Force. A quote from the back

of the NS 16032 microprocessor data sheet (April 1982) is illustrative:

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
SEMICONDUCTOR CORPORATION. As used herein: [life support
devices and critical components are then defined]

In the past, information processors have merely been computers ---

ignorant slaves dogmatically executing their instructions. No

intelligent user would use computer results without independent checks

as a consequence of their generally unstable behavior. This will soon

be impossible for most applications, as it is already in some.

Not only will responsibility for major portions of our civilization

be held by automation, but this automation will not be executing

algorithms: it will be infering causal relationships from experience.

Current architectures can not be extended sufficiently. They were

designed to use hardware efficiently, and issues of human comprehension

and reliability were added as an afterthought. An evolutionary path to

a satisfactory architecture, which can be easily understood and is

..ip. reliable, necessitates the inefficiency imposed by constraints of a

bygone era. Extraneous Concepts must be idntifieda~ and 2Jj1tJ

'" This is the core objective of this thesis, in the context of the

hardware-operating system-language model of information processing.

Hardware limitations have constrained most current architectures,

and these limitations cause myriad user frustrations. The two major

-.'. classes of limitations are: 1) those in which certain features,

2



,. arbitrarily chosen (at least from the perspective of a particular

application), constrain capabilities and efficiencies; and 2) the

arbitrary selection, and omission, of features (at least from the

perspective of a particular application). An example of the first

limitation is the selection of a base of the number system used by

computers [Ginsberg 77]. An example of the second is the set of

instructions, and register set, supported by the machine architecture.

Studies are done to provide 'optimum' instruction sets, based upon

programming languages, not upon what a particular user requires [Bal 82,

INTEL 81, Stritter 79, Patterson 81].

An approach to this problem is work which will develop a Computer

Aided Design (CAD) technique to generate hardware from the programming

language definition of a program [VLSI 83, Buric 83]. This thesis

proposes a comprehensive approach towards addressing the problem of

achieving understandable and reliable architectures which can be

efficiently designed, produced and maintained. Simply, all this thesis

suggests is to bring some of the structure developed in Higher Order

Languages (HOLs) into the hardware after selecting a consistent and

nonredundant set Of concepts.

Since hardware has been so expensive to build, extensive effort has

evolved general purpose designs which can be adapted to many uses.

Consequently, most people who specify actions which they would like

accomplished by currently available automation can do little more with

the basic hardware than warm themselves.

To permit the hardware to be used, many languages have been

developed which permit the application programmers to describe

..-. algorithms in terms of a model which is closer to their application than

3

*q ,' C " . ". **." • ". , * ".- " - *; * " - - *- . . -"."'-. Z- ."%' . * '



the underlying structure of the hardware of the mach±ne. For examples:

* FORTRAN was developed to compute numerical formulas; APL was developed

to support linear algebra; BLISS and C were developed to specify

operating systems; PASCAL to teach structured programming; LISP was

designed to manipulate symbols; and PL/1 and ADA were designed to be

'universal'. Without exception, languages used in program development

systems require access to operating system and machine instructions to

patch over portions of their model which is insufficient for a

particular application.

As computers have become cheap and popular, hardware architectures

have proliferated. System software has evolved from its past role of

giving one machine many faces to giving many diverse machines one face.* 4

-The UNIX operI./!g system, which has been ported to every widely used

* programming environment is a example of the latter.

Conventional wisdom attempts to separate the processing environment

into three areas: the hardware, the g£yati , ystem and the laDSILM.

Each of these areas is currently the focus, today, of standardization.

Languages are iterated to be portable across all operating systems.

Operating systems are iterated to be portable across all hardware and

support all languages. Hardware is designed to support many, if not

all, operating systems & languages at the cost of supporting no language

or no operating system well.

By developing standards at each of these levels, by utility in

industry --- by regulation in the government, short term benefits are

expected in addition to insight into some of the problems mentioned

above. To expect short term benefits is reasonable, to expect insight

*--%, into the problems just enumerated is absurdl

,--4



* Suppose it is desired to define a new language with a new feature.

This approach implies that the new language Must maintain compatibility

with current hardware and operating systems. What if these constraints

nun. the problems, as demonstrated by the ADA language development

effort EDoute 80]?

What about enhancing an operating system? It is constrained, as

are languages, by current hardware. It is also constrained by

languages. If the new feature is not conceptually within the language,

then the only way to exploit the feature is With system calls. Since

any system supports many languages, providing appropriate system calls

which do not erode the structure Of the supported languages is not

-. trivial. Even if this can be done, System to system compatibility

problems avert all but the Most daring programmers from Using these

features. The computer science literature describes, and most operating

systems have available, many such system utilities. They are not

* co=o nly used because they are not integrated into the conceptual

framework of neither the host operating system nor any of the popular

* languages.

What &bout the hardware? People who build the hardware gjq

innovate! But recall that the few engineers who are capable of

integrating the hardware With software into an operating system Must do

so before the innovations can be exploited. The language Must still be

penetrated.

In order for hardware to be exploited, the operating system must

support access to it, or exploit it, and the programing languages Must

provide access to it, or exploit it. Hardware will be utilized to the

degree that it is conceptually integrated into programming languages

5



used by those who can benefit from it. The specialized hardware must

also be reliably supported by the operating system.

Special function units have been built for specialized

applications, with success limited to specialized applications. But

hardware has been constrained by the operating systems available, and

the popular programming languages. Hardware has been further

irrationally constrained by the strategy of adopting standard

instruction set architectures, which although successful for IBM in the

1960', is without any merit what so ever in the current age.

Essentially, the instruction set is so far below the level of

abstraction at which most programmers work, and so antagodistic to

efficiently supporting the abstractions which they do use, that

administrative standardization (read waste) is .2Ug defacto

standardization at the programming language level which could,

potentially, result in more efficient and reliable software at lower

cost.

Initially, hardware was limited. Operating systems and programming

languages were developed to ease programming of a very limited machine.

The cost sunk into programs for these limited machines became great very

quickly. Based upon the faulty assumption that programming could never

be fundamentally simplified, it seemed a good idea to maintain

compatibility to get some benefit from past programming effort. That

is: maintain current (read obsolete) operating systems and languages.

-t. Although hardware is still constrained, it is .kz choice and need not bel

:f. The salient question: "Is it possible to avoid the

* hardware/operating system/language model for programming?" The answer is

an emphatic yesl, with great gains in programming efficiency, execution



efficiency and collateral reliability. These gains are the consequence

of unifying the information processing system model so the language,

global architecture (operating system), and local structure (hardware)

are but three instantiations of the same monolithic conceptual entity.

There seem to be substantial agreement that information processors

will evolve; the major questions to be answered are: when? and how?

This thesis attempts to answer these questions respectively, =o,

and by reconstructing information Drogessint architectures from first

"rinlnleas to be comnatible with sophisticated users while Amloitina

current and prolected hardware fabrication technioues.

The following thesis is built around a language definition, and

development of a complementary global and local architecture to support

it. A comparison will be accomplished to show that the resulting system

is at least as competent as the C programming environment. An overview

of the thesis organization, by section title, follows.

Arah±tuglirAl 0hisatis defines the term architecture in the

context of this thesis. Characteristics of the uRs of the

architecture are developed, and then the architecture is summarized from

their perspective. The section concludes with identifying the

constraints ir-aeed upon the architecture.

1" COLg& tL A zir a Speeffication describes the semantic concepts

implemented within the language. Using as a point of departure the

sophisticated user, the fundamental ideas of the language are developed.

This section describes the ideas of the language unburdened by syntax.

An Intuctory ZI5&1. hLtJ. Ar aaLjA. provides a taste of

the language before the syntax has been introduced. The example

• .. provided is simple enough to permit the style of the language to be

:"7

S ; *. *%% -- ~ .



demonstrated and understood before the language has been studied in

detail.

Laa&UMg Desrpin focuses upon the syntax of the language. This

- section serves as a preliminary language reference manual.

Aaggjk a& M1j.u A. Iatg = Product demonstrates two of the

more powerful features of the language, generic algorithm definition and

$i parallelism, in a straight forward example.

r2 in Sunnort Requiremnts first describes the three

representations through which algorithms metamorphose during their life

from user definition through machine execution. Programming development

aids are discussed in a speculative, as opposed to definitive, context.

Hard ae describes particular architectural features

which have been developed in concert with the language, and are

consequently required to support the language efficiently.

L nuan. Analy-ss provides an informal argument that the proposed

.2 environment is mA ISIML to replace existing programming environments,

and nuaaaMs to instantiate future proposed systems. Since much of the

motivation for this language came from C, the informal argument takes

the form of an approximate comparison of the two languages arranged in

the format of the C reference manual [Kernigan 78].

2summarizes what should be done to develop a working

model of the architecture, suggests work which should be accomplished to

improve the architecture, and states why the proposed architecture

development should be continued in light of current language and

*hardware development efforts.

The fundamental objective of this thesis is to stimulate serious

thought about restructuring the information processing model by

-. 9
'

9 il el il l ,p l~r ilr ~ ~liI, F i" .
e

I l i " "9 I i" " " .•e



S - - - 4 *.% ,~w 4.. 4

* -4

providing a rough heuristic description of an internally consistent
architecture with apparent potential for realization after refinement.

'4-

ft.'
4'.

"'N
* '4

A

4

'4

4"

* .4

4...'

* ,

.4-.

4~. .%~

~

4.

4.,

9
* . *,~4. *4****4**4~* 444

.4 4~ 
4~

q ~ ** £ ~ ~ 4* ~ .- 4*4*
44 44 4.



1L, ARCHITNCTURAL OBETIE

This section first defi±ns the'term arhtetr and then

motivates the development at a new computer architecture. Users,

introduced but not yet described, are characterized and the users'

perspective of the architecture i~s developed. Limitations which

constrain the architecture are mentioned. This section closes with a

summary in which the priorities of the architecture are emphasized.

The focus at this thesis is to define a nutritive design

environment that is realizable; hence initial emphasis will be placed

upon the motivation for and definition of such an environment. The

following sections describe realization issues.

Motatioln

0 The term 'architecture' has been subject to many interpretations

4' Which have specific meaning within the hardware, operating system, and

language model of information processing. To communicate with the word

Outside Of this model, a definition is required:

The art or science of building; specifically: the art or
practise of designing and building structures, especially
habitable structures, in accordance with principles determined
by aesthetic and practical or material considerations

in this case taken from Webster's Third New International Dictionary

(1966).

In the context of information processing intes, bigLgjd= refers

4 to engineering an information processing system. Structures refer to

flexible fundamental building blocks organized within a language.

ZhJabla means pleasant to use, as a dwelling would be pleasant to live

10



I

'...

in. A implies that the information processing system

architecture captures users thoughts unadulterated: that is, the beauty

of an algorithm should not be corrupted by the limited language which

must encode it. Practcal insures that new architectures must always

strive to improve upon current methods; uniqueness is not sufficient.

Material as opposed to ethereal, considerations insure that an

architecture is an aid to suggest how information can be organized, as

opposed to how one could conceive of information being organized.

To suamarize, an infrmation procusing architecture should serve

to A jn r automation to be u=e alr . This thesis is but one

attempt to improve upon the computer architectures which are

commercially available.

Automation is not an end in itself; consequently its purpose must

be reflected in the architecture. The mirpoaa of automation, as with

all tools, is to aid and extend user capabilities. This can be done in

essentially two ways. As with all tools, automation contributes to

sensation, actuation or both. Automation can provide control and

information bandwidth reduction. Two forms of bandwidth reduction are

possible: classification (or selection), and concentration.

Concentration of information can take the form of deduction or

induction. Deduction implies that general rules are applied to specific

cases to determine actions, eliminating the need to store specific

responses for each case. Induction implies that specific cases are used

to formulate general rules, eliminating the need to store minutia

associated with each case.

*Given this sketch of what automation can accomplish, a test for the

utility of specific automation can be defined. Consider a task within

°1

j .



F.l,

.. , the framework defined above, and quantitatively estimate effort an

UMiaaJ. user would expend. Divide this by the equivalent estimated

effort a user would expend assisted by automation; creating and

validating the task specification.

unaided user effort
UTILITY(user, task) a

.automation aided user effort

This function, of the task and the user, provides an indication of the

suitability of the automation available. For example, a utility of

about 1 or less would indicate that the automation available should be

avoided.

The goal of an information processing system architecture is to

maximize the utility function defined above over a set of users and a

set of tasks. By carefully selecting user characteristics, and coupling

the architecture tightly to them, the utility function, applipi over the

domain of qualifying users, can be increased.

haL aflflZerMi1Atn

The user characterization is critical and will shape the

architecture. The user has responsibility for instantiating automation

concepts. As such, two directions are possible: to structure the

architecture to support the requirements of dedicated system

programers, or to strive to adapt it to professionals in other

I professions so they may use it directly.

a. System programers currently provide, in theory, a friendly

*interface between automation and professionals. They realize system

,*.*. capability, and can perform limited debugging. Limited, because

12



algorithms are usually not independent of the automation. Programmers

exist to increase the utility function of the professionals, but in many

cases must function as a professional in the field they are supporting.

Invoking the suggestion that automation does not exist for its own sake,

it appears that if possible the professionals should be supported

directly.

To target professionals directly, it is important to notice their

relative strengths and weaknesses juxtaposed those of programmers. A

dichotomy between syntax and semantics is apparent. Programmers can

manage multiple complex syntaxes, with fixed semantics... to wit

commonly used languages and operating systems. Professionals require a

simple syntax, since its mastery requires extraprofessional study.

However, they can easily handle the extensible and powerful semantics

within their professions.

Mathematics provides precedence here. It provides structured

extensibility from a common basis. It provides a compact notation which

is rich in semantics with a simple syntax. It can be tailored to a

target group with precision. It encourages researchers to be mutually

supportive by catalyzing efficient communication. It permits results to

be exploited by applying a utility test, recognizing the inherent

* limitations of an algorithm. Finally, it is decoupled from material

• implementation; it is abstractly selfoonsistent and complete.

The *user* is now chosen to be a skilled professional, without an

extensive education in computer science. The language syntax must be

necessarily small and logically extensible. The semantics must be

powerful, and consist of fundamental building blocks to permit language

extensions to benefit from structure. The architecture must support the

user in an internally consistent interactive environment.

13



The impedance between the users' comprehension of an algorithm

specification and its realization by automation must be minimized. Just

as optimal power is delivered to a load when the impedances are matched,

the information bandwidth each way, between the user and the algorithm

development aids, should be equal and maximized. High information

bandwidths imply shared contexts, which suggests that the users model of

the automation environment should be implemented directly.

Put precisely, between the language employed by the user and the

machine code interpreted by the hardware there should exist a bijective,

V or one to one and onto, transformation.

The architecture has been Justified by the desire to support a

sophisticated user. The user's perspective will now be used to

introduce the architecture.

In order to provide a useful overview of the architecture, two

1 views are important. The first is the algorithm specification process;

* how does the user transition algorithm to automation? The second is

the algorithm life cycle; how is the algorithm born, how is it

implemented, how is its performance improved, how is it maintained, and

how is the algorithm finally replaced.

The following overview starts by describing the algorithm

specification process in terms of the architecture information

processing model.

.4 The information processing model embodied by the proposed

4'architecture consists of four basic ideas. They ar efiiton

decaration, acio and cotet First, objects Must be defined.

Second, they must be declared, or instantiated. Third, they may either

1~4



.*-- 77_J 2 -0

:.' act upon other objects or be acted upon themselves, and fourth, the

characteristics of an object are not entirely described by its

definition, but are affected by other objects within its environment.

The user first characterizes the objects which will constitute the

automation environment. These objects can be either AJA or A911zi.

-~ The term 'user,' in this context, is broadened to include a specific

professional field.

Static objects can be either ZagLar, which denote elements of the

set of discrete real numbers, or stutrd which are composites of

stiructre and Agal=ar objects and denote n-dimensional elements in an n-

space. A house number might be a scalar object, while an entire street

address constituted by semantic units is a st rre object. Active

ft,.,

*objects are either operators or tUCJ= Integer operators are either

monadic or binary, and return an integer. This concept is generalized

to objects. Functions require optionally one object and return

optionally one object. Functions do not inherit the visibility of the

environment from which they are called, but may be passed portions of it

via an argument (by value) and by a concept called .1.±nAgn (by

reference). Implicit side effects within the calling function do not

occur.

A definition is a description of an object, Just as this thesis

describes an architecture. A description must be dec ares or

instantiated, or realized, or built before it can do anything. A

tdeclaration creates an object from a definition and names it. It is

then real and can be used. For example, a subroutine is defined which

computes the trigonometric = function. It is declared with the name

? V., AJ&", and " a x" has the conventional meaning.

% ..

i' .' ojecs ae ethe r fnctins.Znt~eropeatos ae ethe



Actors are processes which act upon static obJects. The user

specifies these operations on scalars and structures by operators and

functions he has defined. The two fundamental actions are evaluating

expressions and assigning values to named objects. In addition the

language supports intertask communication, iteration, conditional

execution, and dynamic object allocation. The user's major challenge is-.
decomposing his algorithm into sequential tasks which minimize intertask

communication and overall elapsed execution time while maximizing

opportunities for parallel execution.

-' The context in which an object is declared, and used, is important.

~ In the 0= xw example above, the definition of x was not explicitly

identified. It could have been defined when sn was declared, but in

most cases would be deferred. The trigonometric = can be defined in

terms of other objects: the operators addition (+), subtraction (-),

multiplication (0), and division (/). Multiplicatiot and dlv.sion can

also be defined in terms of the operations addition and subtraction, but

for efficiency reasons multiplication and division are often implemented

directly in hardware. In theory, as in this architecture, the semantics

of =in are dependent upon these constituent operations. The linkage

between these ideas occurs, in contemporary parlance, at 'runtime'

without performance penalty because of architectural innovations (see

section V for details).

The next section, Approach to Algorithm Specification", continues

the development of these ideas. The remaining part of this section will

describe the life cycle of an algorithm.

An algorithm is born when it is fully d and eommunicated.

.' . The language should, and the proposed language does, efficiently share

-'" %



*4 *

structure with the user. It accomplishes this sharing by adopting the

organizational perspective of the user with respect to objects. Except

for the basic building blocks Consisting of the means to construct

sstrucats.r, fun±ns. and oprators all of the organization

within the language is M defined. A J&D&MM definition .j~agag is

*: being proffered.

This language is specifically designed to flexibly accommodate the

user. Consequently the specification and debugging of a working

algorithm should be the simplest method to communicate its accurate

description. Algorithm specification is catalyzed by an interpretive

environment, with a semantically oriented program editor and execution

monitor (see section VII for further discussions about programming

support).

SOnce the algorithm has be specified, it must be implemented. The

distinction is that an imlementation is c by operational

limitations, such as a time line, or execution costs. The algorithm

must be decomposed into concurrently executable sequential tasks with

the aid of tools to interactively monitor intertask communication and

interactively monitor task execution.

Restructuring the algorithm may not be sufficient to meet

operational limitations, imposed upon the algorithm, and exotic

technologies may be required. Computationally intensive portions of

actors can be isolated, and compiled into hardware; the compilation

process is quite simple compared to that required to instantiate the

average.software subroutine in hardware. A conceptually similar method

has already been described by Buric EBuric 83]. The architecture

supports a linkage to active objects which is independent of their

17

~ N\-.'-"~.2 *.. * . ~* ~ Wa*



V7. 7-

implementat on in either hardware, software or both. In all cases, task

control is maintained by the standard kernel which is the machine

language interpreter. This will increase performance, reliability, and

compatibility between hardware, users and algorithms; in that order.

Maintenance can be done modularly. Suppose at some point,

returning to the =j example, it is desired to replace a Taylor series

expansion with a Chebychev series expansion. It can be done once for

all objects for which a has meaning.

This can be done because =~i contributes a formula, in the form of

a Taylor's series or Chebychev expansion, in terms of the basic

arithmetic operators 1-1, t+ I fo, and 1/1. For any domain,

represented by x, for which these operators have meaning.., so does a=l

x. This exemplifies the importance placed upon context by the

architecture.

The concept of system replacement will be itself replaced by the

practice of incrementally changing the hardware or the algorithm.

Since the algorithms are not tightly constrained by their automating

system, incremental modifications will be less constrained, hence

cheaper, hence used more often to meet system capability shortfalls:

instead of replacing the entire information processing system.

Algorithms, since they are represented in a language tailored to the

field from which they sprang, will be easy to understand and reliably

modify: that is change or correct without introducing new bugs or

design errors into the system.

~Th. Any architecture, because of practical and material considerations,

is constrained. This architecture is primarily constrained by the

18

p*% .



people± who constitute users. It must reflect a human comprehensible

language, which implies what might be considered inefficient structure

and hierarchies. It must bend the otherwise ideal machine architecture

to permit educable users to think within the structure it provides.

That is, not ones and zeros: 10010100 10101101 10010011 00011101. (The

so motivated reader may wish to compare the meaning of these four bytes

in the several machine languages in which he is personally intimate).

In the short term, it appears that VLSI based upon solid state

physics, specifically semiconductors, will be the implementation

technology of choice with the attendant interconnection limitations.

However, organic molecules offer a light on the horizon promising

density, speed, connectability and selfrepair which cannot be ignored

[Ostroff 83, Barker 803. How many presaged VLSI in 1950?

In the remaining portion of the thesis, as the topics gradually

become more applied, it is important not to lose sight of the primary

motivations. These are now summarized.

The interface to the user must be optimized. The user Must not be

bored or frustrated. The impedance between the user and the automation

must be minimized. This implies two way communication. The purpose of

the language is to facilitate efficient two way communication, which

implies a bijeotive transformation between the language and the machine

instructions. Comnication implies sharad agazgLL and to maximize the

context shared, the context should be dynamic and extensible. The user

must be able to easily raise the level of abstraction without

sacrificing architectural structure: structured extensibility is

required. The language must embody a concise system model to

19

". -.



V'2 ,, unambiguously (over the carefully defined user population) interpret a

specification, and the architecture must ensure that automation behavior

consistent with the system model is presented to the user.

Finally, the architecture must support semantio structures

convenient to people efficiently, directly, and comprehensibly. In the

next section these structures will be described.

,'20

'-N,

'4.

..,

NH..



.1- . "; .

.4

The conceptual characteristics of D will be informally introduced

in this section, before the syntax is described. The following

panoramic view ia designed to aid organization of the language details

"" described in section V, entitled 'Language Description3 .

The most difficult part of designing any system is partitioning the

system into constituent, compatible, comprehensible subsystems. The

structure of this programming language flexes to meet application

requirements. It does not provide a canned solution to any particular

application but instead provides a nourishing environment for many. In

a sense it is a 'language de~inition language, and "application

programs' are really specialized languages catalyzing communication

0between man and machine. By attributing characteristics to the

architecture which support experts familiar with it, and their field,

novices are sure to be well supported.

As will be seen, the language is interpretive, structured, and

extensible. The user Is guided by the environment in the creation of a

robust, efficient and extensible program.

Objects are fundamental to the language semantics. They not only

hold values but ay connote meaning. Denotational objects are

considered passivet and are called either "scalars' or 'structures'.

Connotational objects are considered active, and are called Waotors".

For example, 'operators" and "functions' are actors.

Certain basic objects are defined within the language. These must

be used as a basis for object definition and declaration. An

":: :"' application program must define classes of objects, declare

21

-. .... . .. ... . . . . . . . . . . . , , ,.. , .* . **-. *. . ... * . o , % .4 , 4U,: . ' .



instantiations of defined objects, and apply actors to objects within

the language structure to yield program results. The language consists

A of structure to:

* dynamically create objects,

* control statement sequencing with iteration and conditional
statement execution,

* coimunicate between actors, and

precisely control the scope of object names.

Section IV contains an limited example of this structure in the
"%I

form of an algorithm to add rational numbers. Although the syntax will

.. not have been introduced, the example demonstrates how portions of the

language work together. After this example, the syntax is described in

section V. It, in turn, is followed by an more substantive program

example which demonstrates generic algorithm specification and parallel

execution.

In the course of specifying an algorithm, classes of objects must

be specified. An object is something that is capable of storing or

manipulating a value. Variables, constants, files, functions and

operators are all objects. A name is not an object.

Characteristics common to a set of objects are abstracted and bound

into a defined class. An object is created, or declared, as a member of

a class. Each object shares its characteristics with other members of

its class with the exception of its name and its value. A unique name

is given to each object when it is declared. Its value need not be

• ".4* unique.

22

.N4



'Value' is used in both the denotative and connotative sense.

Objects can be either static (passive), or dynamic (active). A passive

. object is acted upon, while the active object does the acting. For

example, algebraically the letter 'Ix may name, or denote, a real

number. The function sin x denotes a real number as well if x is

known, but also connotes trigonometric theory whether x is known or not.

There are four types of files which factor the characteristics of

objects permitting efficient and modular algorithm automation.

Characteristics of static objects are described as scalars and

composites of scalars, called structures, in state definition files.

Characteristics of dynamic objects are described as operators and

functions in terms of sequences of transformations upon static objects
. %

in actor definition files. The values of objects are declared and

maintained in u12rML files.

Context, which controls the interpretation of object

characteristics, can be organized using hwialda files each consisting of

a list of file names.

lainua~mIA a frogrmat ?Haha

- Every language has a programming method requisite to its effective

use. D is no different. Although programming is recognized to be an

iterative process# a nominal sequence of steps can be identified.

First, templates must be defined for each class of static object

4 which Is required to maintain values by the algorithm.

Second, the transformations (or actors) must be defined. Each

actor argument class and result class, if any, must be determined and

S ....,' declared. Objects referenced by the defined actor must be determined

'4 and realized. Any transformation must be defined in terms of the

23
%h. "

'-,. -: * ... %. .,....,.... ..



transformations available in either preexisting definitions or hardware.

Each of these transformations, implemented as expressions, must be

integrated into the target algorithm via control: conditional expression

evaluation and iteration.

Third, defined objects must be declared or created. Active objects

specialize the class Of their arguments, while passive objects

specialize the class of the value they maintain.

Finally, the juxtaposition of generic class-less actors, class

definitions, and object declarations permit algorithm to be defined and

manipulated efficiently at User created levels of abstraction.

Baal& Atat ZrndtfIn±U1n
The proposed architecture and language attempt to provide a

structured and extensible environment for users to adapt automation to

their requirements efficiently and reliably. A core, from which

everything can be built upon, is predefined within the language.

The architecture understands a practical subset of discrete real

numbers, and their associated arithmetic and logical operators.

Predefined arithmetic operators are (a, +, -). Note that (0, /) can be

defined in terms of (+) as can the logical operators. Fixed, float,

character, and other types which often are considered part of

contemporary languages are all user defined.

All the classes and their supporting operations and functions must

be defined in term of the predefined operations. This does not imply

poor performance because of the architecture, as will be seen, is

designed to support hardware Instantiation of compute bound actors. A

"predefined" set for any realization need not be the minimal

*predefined" set of the architecture, but should include it.

24

~ *s .*---



The architecture is constructed to support four basic concepts.

", These concepts are combined to automate verifiable and reconfigurable

algorithms.

._ The structure of a file contains four entites with specific

functions. They are the file class (either state .ctr storge or

bjUd W , the name of the file, the linkage section (identifying other

files to be shared or copied to correctly interpret the following body),

and the body.

Files can be either copied for exclusive use of the body, or they

may be shared. Usually definition files are shared, while declaration

files are copied. If two concurrent actors need to share access to

~. ' objects, then they might share the sorage files instantiating the

4shared objects. The linkage section also permits objects to be renamed

for user clarity and machine efficienoy. The differentiating portion of

each file type is its body. Each of the body functions is introduced in

the following paragraphs.

The first two classes of files (£JaX& and actor) are required to

construct the basic building blocks of an automated algorithm. Scalars

and structures are defined by state definition files. A scalar is an

object with one value. A structure is a composite of scalars, other

structures, and pointers to active objects.

Actors, operators and functions, are defined by the actor

definition file. Operators are named by special operator symbols and

require one, optionally two, arguments and always return a result.

Functions are referenced with object names and require, optionally, one

argument returning, optionally, one result. Since structures may be

argumentas this is not as restrictive as it may first appear.

25



* 4

-. -,Once building blocks have been designed, they must be constructed

* out of compatible "materials". In this architecture, this is analogous

to ceatng bjetsboth active and static, with compatible classes.

Lt~Agi files are used to declare objects, or create entities with names

and values from the definitions.

JUQ files organize the logistics of integrating the building

blocks into an automated algorithm, or application program. Related

4sate~a files, actor files, AlrC files, and hualJ files can be bound

together into a structured unit constituting a component in an even

larger system. This file class effects the agglomeration of related

files into an entity which can be manipulated as a unit. It provides an

amenity to encourage modularity and functional factorization of

definitions.

In the following subsections, each of the tile bodies will be

decomposed into its salient concepts. The intent is to motivate the

capability included in the language. Precise specification of the

language is deferred until section V.

WCAL.

In order to conceptually manipulate many objects, it is imperative

to factor the characteristics shared by sets of objects into classes.

During algorithm specification this process has already been largely

accomplished motivated by analysis as opposed to algorithm automation

issues. The problem is to construct blueprints Of the many objects

which must be modeled by the automation using as many common building

blocks as possible. This must be done without constraining analysis or

obtuscating the algorithm in its executable form.

26



The objective is to Aoncentrate shared informatcn into single

files. This information can be efficiently referenced using linkage

- - "without respecification. Minor changes should be localized to one small

'. 'file. This is an example of the ortkogonality the architecture is

desined to support.

Each state definition must have a unique class name. Each state

definition defines a Z&achi representation and a U=e representation.

Definitions serve to commnicate the Users design to the automation in

three major areas.

Z/' In the first area, scalar representation, the rane of values must

~defined as well as the compatibility of these values with other classes.

All scalar values are represented as a countable set, bijectively napped

L onto a set of discrete whole numbers. Through this discrete set of

whole numbers, the predefined operators are given meaning.

In the second area, multiple scalars and known structures are

~organized into new structures. The machine format is specified in terms

I of scalars and known structures. The user format is specified in terms

Of scalars, known structures and quoted literals, with the capability to

~specify whether leading or trailing zeros in the representation of a

~value are significant. For example, in a floating point representation

trailing zeros are not significant in the mantissa. Zeros on either

' side of the decimal point are; and so on. The important point to recall

9-,

~in that the user format in bound to the sIMa of the object. It is not

determined by an input or output actor.

In the thid area actors, which manipulate static objects, are

defined as sequential procedures. The body of an actor definition

consists of an operator or function declaration which names the function

27

fil. .. sa examle o th r~o i tyl thei arh itr is i i l l



about to be defined, and declares its arguments. Two types of dynamic

objects can be defined: functions and operators. Operators require at

least one argument, and may be either prefix, infix, or postfix. An

operator must return one value. The operator name space and all other

name spaces are d±1oitj.

Functions may optionally have one argument, and may optionally

return one value. They are named from the same name space as static

objects.

It is possible to defer the identification of the class of an

argument, or a returned value, until actor declaration or even

execution. The argument of an operator or function can use its class,

if defined, as a parameter. This can be handled in two Ways: first, the

class can determine which actor is selected; second, the actor can be

defined in terms of other actors which are visible during execution. In

the latter case the function is class independent.

Actors can perform conversions from one class to another, but they

cannot accept arguments of different classes. However, if a function

is invoked with arguments of two different classes and a functional is

elf available in the execution environment to perform the requisite class

conversion it will be invoked to perform the conversion automatically.

Each actor definition contains a block which sequences object

manipulations invoked during execution. Blocks will subsequently

discussed.

After all the classes relevant to the algorithm have been defined,

.*-*: ~ the blueprints for the building blocks are complete, and the building

blocks are ready for construction. The purpose of a declaration is to

28

j V ( 4 - * 4-. .*...*.-.* -<. .. 4.'. 4 *



* instantiate an object and then bind it to a referencing method and a

class definition.

The class definition serves as a template for the declared object.

There are five kinds of templates: scalar, structure, operator, function

and file. The template provides a class name denoting abstract

properties of an object. It also provides information to permit access

to components of a structured object. The range of an object is defined

by its declaration template. For actors, the domain of the arguments

- and the range of the result are defined.

Four basic referencing methods are Possible in the language. A

tree model underlies structured classes, and this method is controlled

by the definition of a class. The other three methods are arbitrated by

the object's declaration. A direct referencing method requires a name

0 to refer to an object. An indirect reference permits a name to pont to

another name which references an object. Objects so declared may be

initialized to known nAia not Values. A group of components may be

collected together into an arrAr., and referenced with the aid of an

index. The defined class of an object and its referencing technique may

be abstracted and used as a template for yet another object. In such a

manner, pointers to pointers and multidimensional arrays may be declared

4 although a series of steps is required.

Objects may be created sata&.~lly by creating and copying A12raaa

files. They may also be created gdynama±naliz, with the =1 keyword and a

known pointer object. The dynamically created object is appended to the

pointer's owning storage file. The object reference value is assigned

i.-. to the pointer, and the object may be initialized when it is created.

29



~' V'-'The J±U± of object begins When it is instantiated by a storage file

or when it is copied as part of a storage tile, or when it is declared
by a new statement. The life of an object ends When it is no longer

referenced by either the declaring actorg or any subsequent referencing

object. The keyword 2MUl can be used to dereference objects from

pointers.

Linkage may be Used to locally introduce new objects with known

names. The old objects are h==.gn only until the end of the block in

which the new objects were introduced.

Action occurs when a new value is assigned to an object. Three

ingredients are required:

0 the logical name of the object to be assigned the new value,

* an expression which will evaluate to the new value, and

San assignment operator which effects the assignment.

First tkhe concept of a logical name will be discussed; second,

expressions will introduced with the additional complications to action

they engender; and third assignment will be described. For now consider

the action connoted by an actor to be defined by a list of statements

assigning expression values to logical names and executed sequentially.

The slur lest form of a logical name is an object name which

provides a direct reference to the object of interest. Some objects,

called pointers, hold, as values, the logical names of other objects.

An ambiguity between naming the object holding an object name and an

object holding a object value is resolved by preceding the name with a

30



.4

cal o, # when the value holding object is required. That is.,'.special syvalue

if Optr" is a pointer name, "ptr" refers to an object name while "#ptr"

refers to an object value; the object value of the object name pointed

to by "ptrw.

File names are also considered to be logical names, but of a

particular class. Each logical name is bound to a particular class.

Objects referenced by a pointer must all be of the same class. No

object can be declared to be of a generic class which permits it to

maintain values of all classes.

A logical name can also refer to components within a structure.

The structure must be named, and then following a special symbol, *',

.the component must be named.

Many objects derived from a class may be bound into a

multidimensional array. The entire array, a dimension, or a component

may be referenced using a logical name consisting of an array name

followed by indexes in brackets, '[' and 'Jl, which select dimensions

and components.

Pointer names and array names are logical names themselves,

permitting nested indirect references. A renaming capability within the

linkage model permits logical names to be streamlined.

Assignment is the one operation in the language which is predefined

*. for all objects regardless of class. The class of the expression on the

right of the assignment operator is coerced, If required and possible,

to match the class of the logically named object on the left of the

*. assignment operator. Assignment occurs only if the class of the logical

name, on the left, is identical to the class of the value, on the right.

" The resulting class required for assignment does influence the selection

31

' , * c .=°' -*.- - .° "•. ". ". .°.• •."- : * >:-.-.; " '-~ Q ".:-.'-;- - '- -.. -



~'. ~-~'of operators within an expression.

Careless definition of operators can lead to ambiguous expressions

with values which are not precisely defined. The language in no way

supports such careless programmers. A linkage facility is provided

which permits competent programmers to precisely tailor the scope of

actors to insure that this problem is avoided.

The simplest expression consists of a logical name. The value of

such an expression is simply the value of the object referenced by the

logical name. Normally, an expression consists Of Multiple logical

names separated by functions and operators with various levels Of

precedence. Operator precedence can be explicitly controlled by

parentheses. Each function and each operator is defined in terms of a

sequence of statements within an actor definition.

C~) An actor may be evaluated by hardware, another task, or by a

is declared function. The context of a declared function invocation is

that of the calling environment.* If control is passed to another task

(active actor) which fields the function call with an A202 Only the

N argument values are passed. The execution context of the fielding task

is used to evaluate the function. This is also true if hardware is

invoked to perform the evaluation.

The concept of an expression has been discussed, as has the concept

9' of assignment permitting connotative results to be statically

maintained. An algorithm generally consists of multiple expressions,

4, bound together with control structures to implement iteration and

conditional execution. In the case of this language, dynamic variable

declaration and local scope control are also supported to simplify the

Y* definition of actors.

32



The statTe men is the basic unit of sequential execution in D.

There are four statement types, three of which are expressions. The

aforementioned e is syntactically a statement. The return

statement is an expression which oonsists of the language defined

function 'return' which may have an optional argument. This function

passes control back to the calling function. The nev statement is is an

expression which consists of the language defined function 'new" which

requires the logical name of a pointer, and optionally an initialization

expression.

Since D is a block structured language, unlike any widely used

language, it is not surprising that the statement which is not an

expression is a block. Each a~toM is functionally defined by a block.

A block essentially is the one and only control structure in the

Ulanguage.
Foremost, a block is a list of statements to be executed in turn.

Each block begins with 112XM making the block the fundamental unit of

scope control within the language. Since the list of statements within

a block may consist of other blocks, 'block structure' as used within

other contemporary languages is descriptive here.

However, D blocks support gX±g = m. Each statement

- may be prefaced by a &iUMg. The guards of all the statements of a block

form a vector of expressions which is evaluated each time the block is

entered. The resulting values of the guard determine whether the guard

is flM or not. Statements without guards are always considered onen.

Upon entering a block, control passes to the first statement which

has an open guard. In addition to a guard preceding a statement, a

[.n.AnAkI.Qn. follows it. Depending upon the e nuation selected

33



.1*,

* . ,* control may pass elther to the next open statement, or to the next

statement regardless of the guard value. The "next statement" may be

put into the context of any of the enclosing blocks, AaauLQ& that the

enclosing blocks are labeled. Each block may be preceded by a header

containing a block label.

I In addition, D blocks support itrato.n, symbols are

provided to cause control to reenter a block, or to terminate it.

In addition, D blocks provide XA . JIM support. In addition to

labeling blocks, the header contains an expression which defines the

value of open guards, and a switch which enables real time support

within the block. When enabled, control within a block passes through

the first guard to openp as opposed to the first open guard in the list

after all previous guards have been evaluated and are not open.

The intent of the language is to be tailorable to abstractions

employed by users in their endeavors. Context permits ideas and

connotations to be factored into their constituent parts, and referenced

precisely. Each idea can become a building block of a larger

abstraction. Key objectives are modularity and controlled communication

between the modules, where 'module' is used interhangably with file.

Comunication permits the plethora of factored parts to be

integrated into an algorithm. The architecture supports local

Scommunication, defined to be interaction between related parts of an

algorithm executing simultaneously in one processing system. The

architecture also supports global communication, defined to be

,S interaction between different algorithms which execute at different

times on different processing systems. Both forms of comunication are

34



implemented consistently with respect to each other.

Communication is implemented via linkage. All object names for

scalars, structures, files, operators and functions have no meaning

unless the module in which they occur either defines them in terms of

known quantities or accesses, via linkage, a module where they are

defined, or declared. By changing links, a similar idea can be

exploited in vastly different contexts.

Modules may be shared or copied. If modules exist then they may be

accessed by establishing a link to them. They may be shared with other

using prooesses, or copied to create a private instantiation for'-
exclusive use. Definition modules would normally be shared because they

are not modified by the modules establishing links to them. Storage

modules would normally be copied because they are normally modified by

U using modules. Most algorithms do not expect static objects to change

their values without being operated upon by the algorithm. However, one

method of establishing communication is through shared storage modules.

Once linkage to a module has been established, the object names

defined or declared within the module are accessible. If name

collisions occur, or if the names within the module are inappropriate,

the object may be renamed. In cases where a reference consists of

several levels of indirection, renaming provides a direct name for the

object.

Bundle files hierarchically organize modules which are required to

instantiate an algorithm. By linking to a bundle file, all of its

constituent files become accessible. Modules may be organized as

libraries of functionally related operators as opposed to algorithms.
, .Context manipulation permits connotations to be factored from their

.35

! 35



-. r . . ,. . _ , , . , -_. . - ; k, .7 . ?j , ,. , . o . o .,,-.

r- -7!

-..

.! ... implementation, as they are perceived. The connotation of the

trigonometric A=n function is independent of the numerical technique

used to implement it. Similarly, the connotation of a Chebychev

approximatIon is independent o the function approximated. Through the

context management provided by linkage, these two ideas can work

together, and with many othras, without a great deal of redundant

*implementation. Operator structures as well as data structures may be

extensibly supported.

.36

44

4/o



Tntrodutory Eampl! al ~nal ArithmtZe.

Although the following example is mundane, it demonstrates how

parts of the language work together. The algorithm takes several

rational numbers Of the form "x/yW, such that 'x1 and 'y' are integers,

and adds them. The suM is presented in relatively prime rational form.

The algorithm consists of several steps:

I converting the entered expression into internal form;

* performing addition of the rational numbers;

* eliminating factors common to the numerator and denominator;
and

• presenting the final result.

Two classes need to be defined, one to specify rational numbers and

one to specify addition over rational numbers. An expression is entered

on a keyboard as it might appear in a program. The result is evaluated

and displayed on the terminal screen. In this case the algorithm is

defined to be a function named *add*. Assume that two user written

functions, "getw and "putw, are available. Assume that wget' obtains

input from the user, and that 'putw displays output to the user. These

functions have access to the definitions about to be described. Also

-. assume that the file wstandard definitions" contains definitions of the

operators "<n less-than-or-equal, 3xn* is-equivalent-to, and "&&'

logical and.

When code is given as an example, as in the remainder of this

4section, a general description of the chunk of code will be provided

first. Then the code will be listed on numbered lines. The numbers,

•: *:" not part of the language, serve to tie the following more detailed

explanation to the code presented.

37

V .'6 . 4** t-t °* * N ~*-



-|-.- ..

First, the definition of a rational number must be specified. It

consists of two integers, separated by a 1/,, and leading zeros (those

zeros on the left of the integer) are not significant and are not

printed. Since rational numbers consist of integers, access to the

standard definitions are needed. A period ends the definition file.

Note that an ambiguity is introduced with respect to a rational

number of the form 'a/b' and the integer division operator t' since

both tat and tb' are integers. This is resolved by applying resolving

operator names after all passive objects have been recognized. For

example if the result of an expression is assigned to a integer object,

then "a/b' is not interpreted to be a rational number, for 'a' and 'b'

integer.

0o code segment 0ee

1: state rational~jumberdefinition
2: share standard_definitions "" where integer is defined
3: rational .: ( ) -- ) means 02 a 2
4: integer: numerator
5: ) - ) means 2/09 = 2/9
6: integer: denominator7: 1

8:.

Off explanation e

1: The file type is a 'state' file, and the file name is
. . wrational_pnumber~definitionit.

2: The scope is opened to include the file named
"-" standard_definitions'.

3: A structure with the name "rational" is declared, and the
leading zeros of the component declared on the next line are
suppressed when they are displayed.

4: The first component is declared to be of class integer, a
predefined class, with the name "numerator.

S"5: The separator between the two components is declared to be a
t/1, and as in (3:), the leading zeros of the next component
are to be suppressed in the user format.

6: Another integer is declared with the name 'denominator w .

7: The structure declaration is terminated.
8: The state file is terminated.

38

0 ..

., ~ % * .* . •.* . * - . . , ., .... . .- . - . .- .--. , .- . . .*. . . ..



.* .. The 'i' operator is always defined: it always coies, verbatim, the

contents of one object to another, checking to ensure classes involved

! ' are oompatible. Other functions and operators are required, and must be

defined.

As before, the standard defintions are required since integer

operations are used to define the operations on rationals. A

declaration file is also required, although it has not yet been defined.

This is permissible, since linkage to these files is required only

during the execution of the functions defined here, and linkage occurs

dynamically just before execution.

*66 code segment I*e

1: actor rationalactordefinitions
2: share standarddefinitions

* ~3: share rationalnuaberdeclarations

*fe explanation 64#

1: The file is of type "ator', and named
'rationalactordefinition3".

2: Scope Is opened to include the file "standarddefinitions" and
3: Prationaljuaber_declarations'.

The first function defined takes a rational argument and provides a

rational result. Since the structural definition of rational numbers is

verbose, it is convenient to give each component of the rational number

operated upon another more succinct name. With brute force 'i',

.. declared in Prational_nuaber_delarations" along with all the other non-

standard actors and structures, is used to attempt a reduction of the

rational number argument. It is initialized to 1, and then incremented

kuntil it is greater than one half the denominator.
If It divides both the numerator and denominator evenly, then the

numerator and denominator are reduced. The index 't is incremented,

3 39I _ _
o
.. . . .



,. ,'..

3 W 7

i.. and this iteration is continued until itj is too large.

Of* code segment ***

1: reduce :: in rational: r
2: out rational: r
3: rename r'numerator D
4: rename r'denominator D
5: ( i a 2;
6: ne-.divisor:
7: i<a D/2,
8: * factor:
9: ( ((D/i)" i-DanO),

10: aa ((N/i) ' ± - N na 0),
11: D a D/I
12: N x N/i

* .% 13: } factor \
14: I * i * 1 ney._divisor \
15:
16: 1
17: }

, Q explanation sef

1: The defined function is named *reduce*, and its formal
argument is of class "rational', and is named 'r'.

2: The range of this function is also the class wrationalm, and
the formal name of the result is 'r'.

3: The component of 'r' named "numerator" is renamed 'I'.
4: The component of 'r' named 'denominator" is renamed 'D'.
5: The block defining the function "reduce' is opened, and %he

scratch variable 'i' is initialized to 2.
6: The next statement is a block, and this line labels it with

the name fnew_divisor".
7: The block is opened, and the expression 'I <a D/20 is

evaluated. Since the line ends with a comma, the logical line
continues to the next physical line.

8: The '$' symbol indicates that the preceding expression is a
guard. In this case if the preceding expression evaluates to
a positive nonzero value, then control passes to the following
statement (9:), otherwise control passes to statement (16:).
The following statement is a block, and Is labeled "factor'.

9: The block is opened, and D is tested for divisibility by I,
the coa terminating the line signifying that the logical
line continues.

10: And ('&&') I is also tested for divisibility by i, and the
line continues.

11: If both D and N are divisible by i then the following unlabled
block is entered, else control passes to (14;z). An i is
factored from D.

12: An I is factored from N.
13: The current block is closed, and control passes to the

beginning of the block labeled "factor".

40

4%*q



14: The value of i is incremented, and control is passed to the
block labeled 'new_divisor".

15: The current block is closed. (factor)
16: The current block is closed. (newdiviaor)
17: The current block is closed. (reduce)

Now the definition of rational number addition will be

accomplished. Two rational arguments result in a rational sum, and the

rational sum is obtained by component by component addition after giving

each term a common denominator. Since the reduce function is available,

the sum is reduced before it is returned.

s** code segment s00

1: + :: in rational: adl, ad2
2: out rational: sum
3: {
4: sum'denominator z ad 1 'denominator I ad2'denominator
5: sum'numerator a adl'numerator 9 ad2'denominator,
6: + ad2'numerator 4 adl'denominator

.7: sum a reduce sum8: } e

90e4 explanation #40

1: An operator with the name '. is defined which requires two
rational arguments. The formal names are 'adl' and "ad2".

2: The result will be rational as well, with the formal name

. 3: The defining block is opened.
4: The component named 'denominator' of *sum* is computed,
5: and the component named 'numerator' is computed,
6: over two lines, using the predefined integer operators.
7: The result *sum* is reduced to lowest common denominator form.
8: The defining block is closed, and sum is shipped off to the

calling function.

For completeness, the rational subtraction operator is defined

without explanation.

a.



code segment

1: - in rational: sbl, sb2
2: out rational: sum
3: f
4: sum'denominator z sbl'denominator 0 sb2'denominator
5: sum'numerator = sbl'numerator 0 sb2'denominator,
6: - sb2'numerator * sbl 'denominator
7: sum x reduce sum
8: }

Partly to demonstrate the language, the C operator '+-' is defined.

It is defined in terms of the 'u' operator, which is universal, and the

' ' operator which must be available at runtime.

0* code segment **

1: -- :: in $sum: suM, inc
2: out $sum: sum
3: f
4: Sum C sum + inc

*we explanation 0*0

1: A function named "+=" is defined which has formal arguments of
any class with two formal arguments named "sum" and "nn".'

2: The result has the same class of the arguments, and is one of
the arguments: "sum".

3: The defining block is opened.
4: A new value for sum is defined using a presumably visible

operator named "+" capable of operating on objects of the
class of "sum".

5: The defining block is closed.

Now the object function can be defined. It does not take any

arguments per se, since it invokes the input function "get" and output

function "put". If "add" was omitted from the command line below, the

result would be nearly the same. The error handling might be different.

When "get" finds a rational, or ' ', waiting in the input buffer,

it returns a 1 or a ' ' respectively. It assigns the value of the

waiting rational to the object declared as "temprational". While "get"

returns positive results or " ", "add" alternately sums rational values

42



to sum. A negative result from "get" stops the magic, and yields either

the correct result, or "error". As before, a period ends the file.

#** code segment 4

1: add:: (sum : 0
2: addterm:
3: (get $ ( sum += temp_rational;
4: get z 1+ $ addterm\
5: ) addterm
6: put "error*
7: 1
8: put sum
9: 1.

**w explanation **

1: The function name is "add", and the first statement in the
defining block initializes the temporary value "sum" to zero.

2: The next block, starting on line 3: is labeled "addterm".
3: The new block is opened, and the function "get" is called to

give a new value to "temp-rational". If a rational is
available the unlabeled block is opened, and "otemprational"
is added to "sum". Otherwise control passes to line 6:.

4: If get returns a ' ' control passes to the label "addterm", or
line 2:. Otherwise control continues to line 5:.

5: Control passes to the line following the block labeled
"addterm", line 8:. The current unlabeled block isterminated.

6: The quoted literal "error" is sent to the output device, and
control passes to the bottom of the block labeled "addterm"
(7:).

7: The current block is closed. (addterm)
8: The result "sum" is sent to the output device.
9: The current block is closed (add), and the actor definition

file terminated.

Before "add" can be used its declaration, and the declarations of

the objects it requires, must be accomplished. Note that " =" was

defined once, but appears twicel

443S.,

.9 . - -. . . . . . , .€ -. - - - . . . . .. .



• ., **i code segment ***

..- 1: storage rationa..numberdeclarations
2: share rational.umberdefinition,
3: rationalactordefinitions,
4: standarddefinitions
5: rational: sum, temp_rational,
6: + rational, +a rational, reduce rational
7: integer: i,
8: +a integer
9: : add "" no arguments required

10: . none returned

* explanation ***

1: The "storage" file is named "rationalnumberdeclarations".
2: The scope is opened to include "rational_number_definition",
3: "rational-actordefinitions", and
4: "standard_definitions".
5: The passive objects "sum" and "temp..rational" are declared to

be of type rational.
6: The actors, , ,, "+a3, and "reduce" are declared to have

rational arguments and results.
7: The object 'i' is declared to be an integer# and
8: the operator "+a" is declared to have integer arguments and

results.
9: The function "add* is declared to require no arguments and to

produce no results.
10: The period terminates the storage declaration file.

All that remains is to run the program. Typing at the prompt

yields the following results.

>add 1/12 + 1/4 + 1/6
1/2
>1/12 + 1/4 + 1/6
1/2

The latter does not use the function "add", but the 'I' operator

directly. If the input line was typed without the rational definitions,

the result wuld be different (i.e. 0).

This concludes the introductory example, and should have convinced

even the casual reader that the proposed language D is, at the least,

""44

"" -". *',*"* " . -.""" ,. .. ,. .,""" ." " ."'.,"



An enumeration of the notation selected to describe the language

will precede the language description. The language will be described

from the bottom up, starting with the symbols constituting the language

and concluding with the structured extensibility embodied within it.

Notation used to convey the language syntax consists of an alphabet

of nnn±as..n±aaand punctuio±n.

Nonterminals are symbols which are defined by pro ions included

in the syntax, and are strings of printed characters bracketed by '<'

and 1>1. Terminals are strings of printed characters which stand for

themselves, and appear in D programs. Productions show how nonterminals

can be reduced into simpler nonterminals and terminals, and are of the

form:

<file> ::a
<statefile> I <actor.file> I
<storagejfile> I <bundle-file>

The punctuation '::a' indicates that the production reduces the

nonterminal <file>. Vertical separators, 'I', separate alternatives.

Wherever O<file>N appears, any of the four alternatives listed above can

be substituted. The primary units of punctuation used in the notation

describing the language are *<,>,::, Iw .

To reduce the amount of text needed, additional punctuation is

introduced. Text between dollar signa, "$<text>$", is optional. Text

between pound signs, 9#<text>#", must be repeated one or more times.

; ' Parentheses are included to reduce the need for intermediate

4 45

** . . .. *e

,.'.*;****. '~ * *



* .- nonterminals. For example:

<literal> ::z (<digit> W ) $#<char>#$
oO

could also be written:

<literal> ::z <digitor..>$#<char)4$
<digitor_ ::z <digit> {

but would require the additional nonterminal <digitor. .

In several oases, the parentheses bracket a single nonterminal, and

in these oases the parentheses are terminals; not punctuation. Note

*that the construction *$#<text>#$* denotes zero, one, or more

repetitions of w<text>w. The secondary units of punctuation used in the

notation describing the language are: "$,#,(,)".

If lexical units are equivalent syntactically, but are semantically

different the construction is as follows:

<arraynaue>
<tLl.jzame>
<funct.Pae>
<labeljiame>
<pointerAame>
<scala_.ae>
<structurenae> ::z <name>

This conveys that the seven left-side nonteruina13 are syntactically

equivalent to the right-side nonteruinal.

This concludes the introduction to the notation used in this

document to describe the D syntax.

lw* There are five types of tokens in D: symbols, names, quoted

literals, integers, and comments. Symbols will be described first.

46



The language alphabet Consists of four disjoint sets of symbols,

which can be considered tokens which uniquely affect a user output

device (such as a Video Display Terminal (VDT)). They are character,

operator, punctuation and format symbols.

Charaoters. Characters Consist of the upper and lover case

alphabet,9 (a..z, A..Z), the digits 0..9 and the underscore character

!_t. Characters are Used to form names and literals. They can appear

in comments and quoted litera~ls.

<char> ::a
<digit> I<alpha>1-

<digit> :

<alpha> ::
AIBICID IE F IG H I IJ K L M
NIO0 P1 Q R S T U Vl Wl IX 7 ZJ

Operator Symbols. Each operator name consists solely of operator

symbols. Th. operator symbol set defines the symbols that can be used

to form an operator name, and define the precedence of the operator. An

operator 's precedence is determined by the right most operator symbol of

its name. The following production defines the precedence associated

with each operator symbol. Starting from the left, the first two

operators (W ) have the highest precedence. Each group of two symbols

to the right has a lower precedence than the two to their left.* The

assignment operator (xn) has the least precedence.

<oper>:2

417

4A.



Operator symbols can appear in Comments and quoted literals.

... Punctuation. The syntax of the language .s vested in the

punctuation, which consists of 20 symbols; each have a unique meaning

which may be context dependant. Punctuation can appear in comments and

* quoted literals.

<punot> ::X

'11131 II? #D ; .

The following table describes the the meaning that each of the

punctuation symbols can have in each of the three punctuated files; 'S'

corresponds to the State file, 'A' corresponds to the Actor file, and

'D' corresponds to the storage Declaration file. A Ie' in a file, (S or

" D), position indicates that the symbol is introduced only through

expressions. Similarly, a 'd' in a tile, (S or A), position indicates

that the symbol is introduced only through declarations.

ho4

In 4n



T!1TWTV .7R W.7-7 -. 1,v777-0

Table I1: Description of Punctuation Symbols

".bm. SAD

{ 3 delimits structure definitions
V.,,., A delimits blocks

3 A D denotes an array by following a <name>
d d D with an Lndau X& optionally specified by

N. a scalar value within the square brackets
e A e with an inuex optionally specified by a

Sscalar value within square brackets

•- () a A controls expression precedence

) S suppress zeros to right
C S suppress zeros to left

S A D line continuation character

d d D <class> delimiter -- declaration
S A <class> delimiter - definition

-" 3 A D comment initiator

e A e single symbol quoted literal delimiter
a A a string quoted Literal delimiter

e A e possession indicator

" d d D creates nIntar to declared class
-4 e A e obtains object referenced by pointer

e A e address abstraction on following <name)
d d D class abstraction on following <name>

4- A delimits guard expressions
.o

' ? A selects block behavior

<blank> A goto next line of block
A goto next gM line of block
A goto beginning of block & reexecute
A goto end of block

EY:. 3 - contained in state file
%! A - contained in actor file

D - contained In at aJg (Declaration) file
- - only appears In expressions

d - only appears in declarations

'49

.... * '
i * * "'°4



Keywords are also a a form of punctuation, and keyword names are

_ .reserved. The language keywords perform three specific functions: they

determine file type (actor, bundle, state, structure); they denote

interfile visibility (copy, rename, share); and they are used to define

" actors. In the latter role, they control intertask communication

(accept, in, out, return) and dynamic memory allocation (new, null).

<keywords> ::a

accept new I return I
actor I null I share I
bundle I out ' state
copy I rename I storage
in

Format. Formatting symbols organize other symbols upon the page

and delimit files. Horizontal white space (consisting of blank and

horizontal tab tokens) is insignificant except to delimit names.

Vertical white space (consisting of line feed, vertical tab and form

feed tokens) serves to end lines, unless the last nonformatting and

noncomment symbol is a comma, I,'. Commas serve to continue the current

logical line on to the next physical line. All files are terminated

with a period '.'.

Formatting symbols can appear in comments and quoted literals,

except for line terminators (vertical white space). The printable

symbol set consists of the above mentioned symbol set, including the

white space formatting symbols.

50



'-
*. .1

.*. ..-. <format> :: <wapace> I

<Iterm>

<wspace> ::a <HT>
<SP>

<ltrl> ::a <LF> I
<VT> I

M77>

<ftorm> ::a

<psymbol> ::= <punot> I
<oper>
<char>
<wspace>

A mame an be loosely eonsidered as a string of symbols with which

the uaer Iontifles labels, functions, operators, scalars, structures,

pointars, arrays, files and classes. Syntactically# there are three

olassifioations of Identifiers.

Names. In the context of the language, the term nam has a

specific meaning. It is an <alpha> followed by a string of characters.

Any fmber of charaotors can be used within limits. Two limits

imediately cam to mind: comprehensible limits, and line length limits.

If ocomas are used, note that they gn2tiJu JIM but gAlmt. nams.

Only operator names may not be derived from thIs classification.

(nane> ::2 <&lpha>I<char>#$

ULiterals. The second kind of name is what will be called a

lAnI . It is identical to a naMe except the first character must be a

digit or an underscore (_. Such an object may only be assigned a value

by initialisation during declaration. Its value from then on is

constant. Only operator names may not be derived from this

S.. "" """"","".,'. " d :,: .:"i .','.-.".,"..".'. . .".



,Classification.

<literal> ::u (<digit> ) char>#$

Operator Names. The third kind of name is an onerator naM which

is constituted by 1.2 or 3 operator symbols. It denotes, with the

argument and result class, a particular operator. Like functions.,

-a operators are user definable. Unlike functions, which may take one

argument and may return a result, operators require one or two arguments

and must return one result.

<op...jame> ::z *<oper>**<oper)*<oper>

g Lt W

For situations where the value of an expression is a string of

symbols, as opposed to a defined internal value, two kinds of quoted

literals are provided. Quoted literals are represented as a symbol, or

symbols, delimited by a reverse appostrophe 0', or quotation marks ,

respectively.

Formatting symbols should be provided with a printable

representation for inclusion within quoted literals.

* <qliteral> ::a "<symbol>" I wfsymbol>#"

The only predefined type in the language is ±Agar.4 which may be

denoted In. Scalar types are defined by creating finite mappings onto

a contiguous set.of integers. I string of digits and underscores

conatititute a literal which denotes the expected value. Underscores

are not significant although it is suggested that they be used to

.. separate chiliads, or groups of three decimal digits.

52

-a,,



Any expression which yields, as its result, a scalar is

syntactically an integer.

<int> :W: (D<digit> I _ I)
<scalarexpression>

Coents may be inserted into the language following the token

('). Text on the remainder of the line will be rendered syntactically

and semantically insignificant. The comma acts to continue comments as

it continues lines. If both a line and an comment are continued, the
4

next physical line contains the continuation of the comment. The only

symbols which cannot be included in comments are the terminator symbols

for lines.

<oomment> ::a "'$#<psymbol>#$ <lterm>

Functions, objects, and literals are all sources of values.

Expressions connote values as static objects denote them. Function

names always precede their single argument, and bind more tightly than

operators. Operators permit multiple values to be reduced to a single

value. Binary operators require two value argument, one on either

side. Unary operators may either precede or follow their argument.

Operator precedence is determined by the right most operator symbol of

the operator name. Parentheses can be used to change the precedence of

expression evaluations.

The assignment operator takes two arguments, a logical name and an

expression. The assignment operator has the lowest evaluation

precedence and returns the the value of its right hand side argument.

53



Multiple logical names may be assigned values in one expression.

. "The value produced by the expression, right side, is converted to

the class of the object referenced by the logical name, left side, with

a user supplied conversion routine and then assignment is accomplished.

Conversions may not always be required. The assignment is defined in

this way for all user defined classes.

Logical names may denote the values of the objects they reference

and may consequently appear in expressions. A 'Ct preceding a logical

name returns, as a value, a logical name. This value is equivalent to

that held by a pointer to the object referenced by the logical name.

The order of subexpression evaluation is undefined. For example

the evaluation of the expression

f(A) + (f(B) + f(C))

may start with the evaluation of f(A), f(B), f(C) or simultaneous

evaluation of all three functions. If the evaluation order of

subexpressions is important explicit temporary variables should be used

to force the order of expression evaluation.

Portions of an expression may be evaluated by different tasks upon

different processors. Expressions are the basic unit of parallel

execution within the language. Evaluation of an expression will cause

the owning process to hang until all the values required for its

evaluation are available and all subexpression evaluations have been

accomplished. The block structure will be introduced below, permitting

neutralization of expressions which tend to hang.

The keyword nnuagt has been integrated into the language to refer

to a function that can intercept actor calls. It captures the actor's

54

4 -'" -" ' .' .'q.""''' .''""' "':-. '"" ." -' .. ' ... . i.. % 'i



arguments, if any, and the caller identification. Arguments to an

a.g g function consists of a function or operator name.

The value returned by an a expression to its containing

Vi expression is either the function argument it is passed or the value

denoted by the keyword null signifying that a request for services has

been made but no argument was passed. The caller identification is

passed to the next ret. statement, discussed below, in the thread of

control.

The keyword null is also used to denote the value of a pointer

which does not reference an object.

<expr> ::x <literal>
<qliteral>
@<lnane>
<Iname>
<exprXoppame>
$<expr>$<op.j ame><expr>
(<expr>)
<funct-Aame>*(expr>$ I
accept <funct-name>
null

The concept of a logical name permits values to be accessed using

more than one method. Usually the object is directly named. If the

object is part of a structure, the structure and the component separated

by a (f) constitute the logical name. Pointers provide indirect access,

and arrays provide indexed access. A pointer name points to, or has as

a value of, the logical name of an object. A 1#1 immediately preceding

a pointer name provides the value of the object. An array name returns

an array; components may be accessed with indices. Multiple levels of

pointers and multidimensional arrays are possible, but each level must

be explicitly declared one at a time. The class abstraction operator

permits an Warray of arrays", a 'pointer to a pointer", or a 'pointer to

S..a function' to be declared.

55



The number of meaningful 1#' preceding a logical name is dependent

-- 'upon the referencing path of the logical name. Too many result in the

nulMU value. File names may also be logical names.

<name> ::a <objeot..name>

-. 5 **<lname> I
<lname>$[ ($<int>$) ]$
<fileAame> I
<Inane>' <name>

The statement is the basic unit of sequential execution in the

language. Once a statement has begun execution it must completely

finish before control is passed to another statement. There are four

kinds of statements; three of which can be interpreted as expressions

and one which is a compound statement or a block.

Nominally each statement consists of an expression which is

evaluated. In addition to expression evaluation, the language supports

interprocess communication, local access to external modules,

conditional execution, and dynamic memory management.

<statement> ::a

<expr> I
return $<expr>$ I
<block>
new <pointer-name>$z<expr>$

If an operator or function returns a value, a formal variable must

abe declared by the function definition to hold the value to be returned

when the operator or function is terminated. A return statement may be

considered an expression consisting of the language defined return

function. In any case the expression, if any, in the return statement

is assigned to the formal result object, and the enclosing actor is

terminated.

56ai
#1. , . ,j . . . :"""'...;'>2'....o..; .' .,. ,< . ''' . .-.-- '- --" ',-" ".' _% '



Following an expression which includes an acep function, the

reur statement sends its argument back to the calling function. The

accepting actor is not terminated because its activity does not stem

from the calling process, but from some other source.

Another statement that can be considered an expression consists of

the keyword an followed by a known logical name which has been declared

a pointer to a class C. This language defined function dynamically

creates another instance of an object of type C, and assigns the value

of its logical name to the pointer. This new object may be initialized.

Objects which are no longer referenced by any pointer cease to

exist. If imediately after creating an object with ngy. the pointer

used is assigned n"U. the object would eliminated and its resources

reclaimed. A function tree' could be written by tracking down all

references to a object and setting them to some other object, or M 1".

Objects dynamically created and shared with other processes may be

ref erenced by object pointers Outside of the control of the creating

process. Until all the objects referencing an object are terminated,

the object cannot be itself terminated.

-~ Statements are the element of sequential execution in the language.

A blc is a compound statement which provides some relief from this

monotony. It contains mechanisms to locally introduce objects

externally declared, and to implement conditional and iterative

execution of statements.

In addition to serving syntactically as a statement, a block is the

basic unit which defines each actor. Statements can only appear within

blocks.

57



,J, . J -._ a . . a '.a J a . a - - - * * J - . ." - .. . . -- - - - - ~ .

listA block consists of an optional header followed by linkage and a a

list of lines. The block is the fundamental unit of scope control. The

block is the smallest syntactic unit within the language to permit local

names to be introduced via linkage. A block, with the exception of an

optional header, is delimited by curly brackets ((,)).

<block> ::z $<header>$

(<linkage>
#<line>#

Each line consists of a statement optionally prefaced by a guard

and optionally succeeded by a ontinuatL. The guard supports

conditional execution, and the continuation supports a limited jump

capability.

<line> ::a $<guard>$<statement>$<contin>$<lterm>

<guard> ::x <expr>$

<contin> ::= $<label>$ I
,<label>$\ I
$<label>$.. I
$<label>$;

After the statement has been executed, the continuation determines

which statement will execute next in conjunction with the auards. The

enclosing block referred to by the n is identified by the

2abAe. No continuation character indicates that the next statement will

be executed regardless of whether the guard is open, closed, or not yet

evaluated. A backslash (\) indicates that the block will be reentered.

Two double dots (..) indicates that the block will be terminated. A

semicolon (;) indicates that the next open statement of the block will

be executed. From the top of the block, control first must pass to an

statement with an open guard. Statements without guards are considered

4 open.

.",



Each time a block is entered the vector of guards is evaluated and

• ".'" the results stored in a vector of guard values. These values will be

maintained until the block is reentered or terminated.

The header consists of a label and an optional selector. The label

identifties the block for the continuation as just described.

<header> ::x

<label>: $<selectorXlterm>$

<selector> ::a

? I
<expr>
?<expr>

The selector consists of an optional expression and and optional

I token (7). The expression, if present, is evaluated each time the block

is entered. The resulting value is the value that nnen guard expression

p uast have. If the expression is absent, then guards with values greater

than zero are open.

The token (?) is used to modify the sequencing behavior of the

block. Nominally, no (?), the guard vector is sent off for evaluation.

Each guard is evaluated simultaneously with the other guards. Each

guard value is assessed, in the order the guards appear in the block.

Control passes through the first open guard to the guarded statement.

If the block is reentered before all the guards have been evaluated,

more guards clog the evaluation stack. However, all guard evaluations

mast be complete before the block can be terminated.

The alternate form of block control, indicated by the presence of a

(?) following the label, sends the vector of guard expressions out for

evaluation simultaneously as before. In this case control passes

through the first guard which is returned a=e--- regardless of

59

" --" - " J" " " " " " ° " "" w '" JL ' 'V' -"* " " " 
-°

" ' ""a"""
% °

"'-- 
"



position in the block. When the block is reentered or terminated, all

pending guard evaluations are flushed.

"4 In order to apply algorithms in the form of functions and actors to

objects, the precise characteristics of objects must be defined. Unlike

most widely used languages, this language leaves such definitions for

the users (or programmers).

There are four kinds of definitions which occur in two kinds of

files. A state definition file is used to define the static objects

called aal= and -sttes. An actor definition file is used to

define dynamic objects called agrators and tU.gna.. This subsection

will describe the definition of static objects, and the next subsection

will describe the definition of active objects.

Each definition of a static object assigns to a scalar or structure

class: 1) a name; 2) representation internal to the language; and 3) a

convenient user representation. Scalar and structure definitions

constitute state definition files.

Each state definition file starts with the keyword state which is

immediately followed by the file name. Linkage follows. Linkage is

followed by the list of definitions. Scalars are defined to be simple

objects which can assume integer values. Structures are declared to be

composites of scalars and other structures.

°0

"',.-

.4o



1- 1 V, a6'l U - - ir w-. 7- V

'NN

-" - <3tate_file> ::

state <state_fileAame><lterm>

<linkage>

<scalar_definition>

structure_definition>
-a

The internal representation of scalars is based upon integers. The

value of each object may be constrained between bounds, and must be

explicitly integer valued. Derived classes are function and operator

compatible with actors compatible with their parent class.

If a single integer is specified, the range implied lies between

the value of the specified integer and zero. Nominally scalar values

9 range from 0 to a single upper bound. If two bounds are given, the

9 scalar value ranges from the first, lower bound, to the second, upper

bound, inclusive.

<scalardefinition> ::a

<scalar-name> :: <int>$..<int>$ <lteru>

Scalars are implemented in precisely as many bits, in a binary

representation, as is required to contain the range desired. Other

nonbinary implementations are possible. Implementations may suggest

ranges for efficiency. The user sees the values of scalar objects as

integer literals. Negative values are preceded by a '-'. Classes given

a range permitting negative values hold a space for the sign.

Structures enable compositions of all previously defined classes to

be bound together. Recursion is not permitted, but pointers within a

-. structure may point to the objects of the structure class being defined.

61



<structuredefinition> : :z

S'.' <struoture._name> :: {#<comp><lterm>#

I <iterm>

Each structure is defined as a list Oa composites. A Composite is

-'. either an object declaration or a a string of symbols. Parenthesis may

be placed on either side, or both sides, of the symbol string.
.9

The internal representation of directly referenced objects on the

structure list is their scalar representations as described, from top

(left) to bottom (right), tightly packed. Pointers and arrays form

boundaries over which this need not be true.

The user 1/O representation consists of the component scalar values

presented from left to right, modified by interspersed symbol strings in

the structure definition list. A '( or I)' suppresses zeros beside the

symbol string, on the side it appears.

<coup> ::a

<objoct..decl> [
$($ (# <psymbol> # • *) $)4 l$($ ) I
(

4 Zn a mu4 . Dan.nQs.

Functions and operators are objects which act upon other objects.

They are defined in a file initiated by the keyword aesort followed by

the actor file name. The actors are defined in terms of previously

defined objects, and accessed through linkage.

In addition to a name and linkage, each file consists of a list of

. definitions. E ach definition consists of a nam and a bLk, and may

include a result and an argument declaration. The manipulations it

. -..- performs are specified by its block.

62



<actorj'ile> ::a

actor <actorfile-name><lterm>

<linkage>

( <op..Aecl> I

<functdecl>

<blo*k><lterm>

The class and number of arguments and results of functions and

operators must be declared in their definitions. The class can be

declared generio. The declarator determines whether an array, pointer,

or object value is required or returned. The structure of the argument

is provided an an object declaration following the keyword Jn. The

structure of the returned value is provided as an object declaration

following the keyword ut.

An operator must have one or two arguments. An operator must

always return a result. The form of the In declaration contains two

declarators. The first corresponds to the argument preceding the

operator. The second, following a comma, corresponds to the argument

following the operator. The coma must always precede the following

argument.

If the input argument is initialised, the operator may optionally

omit the argument, the initialization serving as a default. Operators

must have one uninitialized declarator. If the output is initialized,

and the operator fails catastrophically during execution, the

initialized result is returned.

63



<op.decl> ::z

<opname> :: in <class>:
(
<declaration>, <declaration>
<declaration>
,declaration>
) <term)

out <olass>: <declaration>lterm>

Functions are similarly defined, and may have only one argument.

The argument and the result are optional. Both the argument and the

result may be initialized.

<funtdecl> ::

<funct.jnaae> :: $out <class>:
<declaration><lterm>$

$in <Olass>:
<declaration><lterm>$

<Iterm>

A storage file has a name preceded by the keyword a Jgim and

consists of linkage followed by a list of object declarations.

<storagejile> ::u

storage <storage_.fileame><lteru>

<linkage>

<objectdecl><ltem

In this file, objects are created from defined templates identified

as classes which are defined in state definition files.

64

' ;, ~ ~ ~ ~ ~ ~ ~ ~ ~ ..:.',., ,...,.,.., .....- ........ ,........ ..... ,.............-,S *......,-,.,



<obJect-decl> ::a

<class>: ($#<declaration>,$#) <declaration>

S<ca*lass> ::

<ilelasa> I <objectclass>

Classes may refer to either objects or files. Files are a special

form of object containing modules of the language. File classes consist

of state files, aet r files, Atgrage files and bundle tiles.

<file..lass> ::2 state I actor I

bundle I storage

* Object classes are defined by scalar definitions, structure

definitions, operator definitions, and function definitions. Scalars

and structures can be specified directly by definition names. All

classes my be obtained indirectly by abstracting the object class from

an object referenced by a logical name with the class abstraction

operator ($).

<object_elasa> : :a <soalarAane> I
<struot. ame> I
<op..,sm> I
<Ounet.nsae> I
<lname>

Declarations instantiate objects from visible definitions. Upon

instantiation of an object according to a named definition, a

referencing method must be established for each object, and the object

may be initialized. If the created object is a constant, as indicated

by its name, it maust be initialized. An initialization is an expression

of already known objects which returns a value of the class of the

object declared. This value is assigned to the declared object.

.,. Structures cannot be initialized component by component.

65



<declaration> : :x <declarator> $x <expr>$

The declarator defines how the object will initially be referenced.

If the declarator is a name, a direct reference is provided.

If the name is preceded by a ,#1 then the name itself provides an

indirect reference to the object and is called a pointer. The

declaration creates a variable that holds, as a value, the logical name

of a object of a particular class. Pointers can be initialized to

logical names of objects with a class compatible with the declaration.

The pointer name references a logical name as a value. When the

pointer name is preceded by the '#', the logical name held as a value by

the pointer is used to reference an object.

If the name is followed by square brackets, relative addressing is

indicated. The name alone provides the logical name of an entire array.

* The name with an index 'n' provides the logical name of the n'th object

in the array. If a scalar appears between the square brackets in a

declaration, it serves as a bound upon the range of possible indices.

If the brackets are empty, no constraints are imposed. In this context,

all scalars are converted to equivalent integers internally.

The pointer symbol '#' binds most tightly, followed by the square

brackets indicating an array. Precedence in a declaration may not be

changed with parentheses. The logical name *#arrayofpointers3n]"

references an array of pointers, n=k a pointer to an array.

Each active object acts upon objects of one class, and returns

values which may be compatible with another. Active object declarations

may be contained within a list of passive object declarations returning

objects of the same class. The class of the value returned is analogous

to that returned by passive objects. The class of the argument, if any,

must follow the operator or function name.

66



<declarator> ::a

<objectAame> I
#<pointer_name>
<array-name>f$<-nt>$] I

.<op. Aame> <class>
<unotaae> <class>

Array names and pointer names can both be recursively defined

during declaration, but not within a declarator. A series of

declarations using the class abstraction operator ($) must be made,

first declaring a pointer 'P', declaring 'P1' to be a pointer to the

class of 'P' etcetera.

LA ZLtn

The building block through which most algorithms should be

implemented is the module, or file. The language supports four file

types: two to define objects, one to instantiate objects, and one to

organize the special objects called files.

Each file begins with a descriptive keyword unique to it, which

describes its function. Follong the keyword is the name of the file

object. On following lines, linkage is included which defines the

S. context of the body of the tile.

The language permits and facilitates modulation of algorithms,

definitions, objects, and communication channels. Linkage permits

familiar concepts to be placed into new contexts to serve in new

capacities. In the context defined, the body of the file accomplishes

the definition, declaration or juxtaposition dependent upon file type.

Each fili ends with a file terminator which is the same for all files.

67



.. j ,.- , J , -. .. ,, .. = --, - . , , - . " .~ ".:-r- .- - u-.CX..
-  

"- ." " -." , ."- .- , "-.- r -'- - .,. - - - ,-" -

Execution requires that several modules work together to provide

*meaning to a program. Linkage provides a means for one module to access

another by either Zopying a module for exclusive use or atarelng access

with other modules. It also permits local logical names and object

class names to be bound to different names defined within the accessed

modules.

First, all the files which can be shared are listed following the

key word share. Second, all the files which must be copied are listed

following the key word cony Third, the key word rAMg is used to

introduce bindings of new names to an external object names and class

names.

<linkage> ::a

Share ($ffile*-ame>, #$)<filejname><lter>$

$copy ($*<filename>, #$)<file.-ame)<lterm>$

$rename ( <lname> <name><lterm>
<objeotaclass> <name)<lterm>

Linkage can be used to bide currently visible names. Renaeing

takes place before the linking file knows about the linked object name:

the old name has no effect on the linking file's name space. Objects

. can only be renamed in the original linking operation.

Storage files, which contain the values of variables, are usually

copied because these files are modified during the course of program

execution; unless interprocess communication is desired. Definition

files are usually shared, because they are not usually modified. Since

* *.. the copy operation performs object instantiation, each file may have its

own private cache of objects.

68

-' ,,' : .' ' . - .-'- ./ .. ..'.. ..-..- -.....-..- j.... .. . ,,., ,, ,, ,.,, ,,.1



" - A module, or file, in this language has no intrinsic meaning. A

collection of modules is required to define object characteristics, and

to declare objects. Several modules, together, constitute an

instantiation of an automated algorithm. A bundle of modules fors an

element which can, with other elements, constitute an application

package.

<bundle-file> ::

bundle <bundle_filename><l term>

<linkage>

#<filename><lterm>#

<file-naae> ::u

A. <statefile-Aame> I
<actorfilename> I
<storageIfile-name>
<bundlefilename>

Bundle files may contain references to other bundles, but not to

themselves.

A library of modules which do not constitute a complete algorithm

may be bound into a bundle for convenience.

.o6

..- 69



, 4,. * -' - -. . :. . .. -, , , -. . .. , ,. . ...-.. - -b . . . . .. - . . ' .- - - -.- . -

~ - flA.LGORITHM M'AM~Lk A.Mco =*~ roduct

In general, computers are useful because they eliminate errors by

performing consistency checks upon assumptions. Put another way, a

major use for computers is to perform simulations based upon a set of

assumptions. The computed results determine if the assumptions are

aaaa*nk with the expected results. A reasonable objective is to

communicate with computers in a language which supports as high a level

of abstraction as possible. First, because the domain of trivial errors

is minimized; and second because communication efficiency is increased.

The purpose of this section is to show how the proposed language

can be easily extended to efficiently support ideas specific to

particular users; in this case the dot product operation applied to

vectors. This section consists of an example of how the language may be

formed to fit particular users' needs, how parallelism is supported, and

how algorithms can be generically specified. This example is a

microcosm of the computer capabilities the proposed language has been

developed to support.

N" fter reviewing the mechanics of the dot product operation, the

Sfile hierarchy required to support a generic encoding of the dot

product algorithm, in D, will be described. In addition to code

implementing the dot product algorithm, code to define a vector, vector

components, and operations upon vector components will be listed. The

effect that special purpose hardware might have on speeding the

algorithm will be discussed, followed by a summary of the key points of

this section.

70



~3MVector D.ot.Product

For the purposes of this thesis, a vector can be considered as a

one dimensional array of On' components, where In' is a positive

integer. Neither the class of the component nor the specific value of n

need be explicitly specified.

The vector dot product, for the purposes of this example named 'el,

requires two vector arguments. Each vector must consist of 'n'

components of the same class. The operation forms a value with the

class of the components.

If A z (al, a2, ... an) and B = (bl, b2, ... bn) then ARB z (al'bl

- + a2fb2 + .. + anfbn), where the component operation ,*, would nominally

be a scalar multiplication for integer ai and bi.

To completely define a vector dot product algorithm for a specific

vector, additional information beyond that provided by the generic

algorithm specification, Just given, is required. Characteristics of

the components need to be defined, as must a set of compatible

operators. The representation of a vector must be specified, and its

length must be set. This done, a dot product can actually be computed.

Figure 1 shows how the vector dot product is constructed from the

basic standard definitions. The file class is written above the box.

k. Some boxes represent multiple file classes. The number inside the box,

in parentheses, is provided to connect the figure with the following

code listings. Asterisks, 'e', indicates code for the block is

subsequently listed.

71



Sstate actor
/- -

I STANDARD DEFINITIONS I
& SCRATCH /

I I II If
I I II II
I I II II

state 1 actor II actor

/ COMPONENT (4) \ / COMPONENT
I -DEFINITION # I I (3)1

-ADDITION / \\ \ OPERATIONS /
.. .. . .. . .\ \ \

-\/-storage II II
/NDECL\ II II
\4 / II \ \\II

state II II actor

II / \ \z>/ DOT
\>=>I VECTORS 0 (2)1 1 (1)M

/\ -,===>\ PRODUCT /

Figure 1: File Hierarchy

Mla Vector n o duct j&9 rjha (1)

The following generic dot product algorithm first establishes the

other files required to give the definition meaning. Some simple error

checking is defined, on errors passing control to functions which are

implicitly visible. The result "dp" is cleared and the index 'n' is

initialized.

Then the dot product is computed. The block structure spools the

component expressions onto the execution queue exactly 'n' (the number

of components) times. The variable "dpw collects the values of all the

queued expressions. The block terminates when all the values have have

been collected. Since the expression queue is a parallel structure,

' . parallel execution will occur if there is sufficient hardware.

72

'.5



To conclude, the result is returned to the task that called the dot

product operator. The listing follows:

..e code segment If*

1: actor dotroduct -- (1)
2: share vector_definition,

componentdefinition,
componentaddition,
error_definition

3: copy component-operations, scratch
4: 1 :: in vector: v1,v&
5: out $vlfv[]: dp

6: blockl:
7: { vltn Ix v2'n $ dimension_incompatible..
8: vl'n mu 0 $ dimension-zero..
9: n= vln

10: dp 0
11: block2:
12: n > 1 $ n =n-1
13: dp z vlv[n] * v2'v[n] dp $111: }

15: return dp
16: 1.

Off explanation see

1: This is an "actor" definition file named "dot-product".
2: Access is required to a file named "vectordefinition",

woouponent-definition", "component-additionw, and
Uerrordefinition".

3: Exclusive access is required to files named
Ocomponentoperations,, to give meaning to (I=, s=, >, , *, .
) and provide for integer to vector component conversions, and

.. scratch" to declare and hold the value of the object denoted
by t.

4: The generic actor (dot product operator) is assigned an
operator nae ,0, and two formal arguments "vl" and "v2" are
defined to be of the class Ovector".

5: The result, named "dp", is declared to be of the same class as
the vector components.

6: The defining block is labeled "block1".
7: Blook1 is opened, and the dimensions of each vector are

checked for compatibility. If they contain a different number
of components, then control passes to the function
ndinension.incompatible" defined in the file
"errordefinition" and to the end of the block (16:).
Otherwise, control passes to the next line, (8:).

8: The arguments are checked to insure they have a nonzero
dimension. If their dimension is zero, control is passed to

..' -. the function *dimension..zerow, defined in the file
"error_definition", before terminating the block as above.

73



9: The dimension of the arguments are assigned to the scratch
variable In'.

10: The result is initialized to zero.
11: The following block is labeled "block2".
12: The block is opened, and all the guards are evaluated with the

current value of 'n'. As soon as 'n' is determined to be
greater than 1, 'n' is decremented and the cycle repeats.
When On<=zl, the block terminates.

13: Each time the block is opened, a new value is added to "dpw
which is dependent upon 'n'. The block may be reentered
before all the guards have been evaluated from the last entry,
demonstrating a decoupling between the control and .XJrLaw a=g
.jU&&-= parts of the language. This may be exploited via
parallelism to improve execution speed.

14: Block 2 is closed after all guard expressions have been
evaluated.

15: The value contained in the output variable, "dpn, is returned
to the calling actor.

16: Blockl is closed, and the actor definition file terminated.

A vector is implemented as a structure with two components. The

first component is the dimension of the vector; an object which stores

the number of objects in the array. The second component is the array

of components.

The value of 'nt must be known, and accessible to this definition,

before this vector definition can be invoked. It is provided in the

file wn..delaration", which is assumed to exist. The file required to

define a vector follows.

s00 code segment s00

1: state vector..efinition "" (2)
- . 2: share n..declaration

3: share standarddefinitions
4i: vector ::(int: n
5: component: v~n]
6:

* '.. *ee explanation *e*

1: This file will define static classes, and is named
vectordefinition"

2: The file "n_.declaration" is required to determine the number
..'.., of components.

74



3: The file "standarddefinitions" is required to define the
class "int", although it could be deferred as 4s "component".

4: The structured object to be defined is named "vector", and the
first component of the structure is named 'n' and is of class
"into.

5: The second component is an 'n' dimensional array of
Rcomponents" named Ivyf

6: The structure definition and state file are terminated.

faxmtai~Sd 9amWL=kW&f g.QDatrsL (3 & 4I)

Components may be defined by considering a passive object

definition and basic set of operators, and then the more general set of

component operators required in the dot product definition.

First consider the definition of the components and a basic set of

operators (4), -, .) ()o The ':' operator is predefined for all

classes, but the meaning of the binary f 1 and unary and binary ?-t

needs to be explicitly specified. In addition it is convenient to

%specify component to integer and integer to component conversion

procedures in the form of functions with the class names and arguments

of the class to be converted. This done, literals composed of digits

take on their usual meanings.

Since the object is a &2AWZJ& algorithm the component definitions,

Just described, will be assumed to exist. The component class rational

has been defined, see section IV, and could be used here.

Second, consider expanding the kernel set of operators in terms of

themselves (3). In this case the operators (2n, >, 9) are required

since they were used in the code above. They are defined below.

ee0 code segment eee

1: actor oomponent_dfinitions (3)
2: copy componentdefinition
3: copy componentaddition "" ( , -, nt <> component cony. )
4: copy scratch "" (sign, n)

75



•. 5: i : in component: operandl, operand2
6 : out component: result

""7: ( result z operandl - operand2;

8: result $
. 9: -result $ result x 0

10: result a1
11: 1

12: > :: in component: operandi, operand2
13: out component: result
14:( result a operandl - operand2;
15: result $ result a 1
16: result a 0
17: 1

18: :: in component: operandi, operand2
19: out component: product
20: ( product z 0;
21: sign a 1;
22: -operandi $ ( sign z -sign
23: operandl x -operandi
24: 1;
25: -operand2 * { sign a -sign
26: operand2 a -operand2
27: 1;
28: operandl u- 0 $ product a 0
29: operand2 xa 0 $ product a 0
30: ( operandl a operandi - 1 $ -" parallel
31: product • product + operand2 $
32: 1;
33: -sign $ product a -product;

*ee explanation *O@

1: The file contains actor definitions and is named

•componentdefinitionas.
2: The files defining the structure of a component,

lcoponent_definition',
3: and defining the basic set of operators (+, a, int <z> cop.),

% 'componentaddition", are required to be available.
4: A 'scratch' file must also be visible in which the variables

'1sign" and In' are declared.

5: The *a* operator is defined to take two operands of class
woomponent', with the formal names "operandi' and 'operand2'.

6: The result will also be of class 'component' and has the
formal name "result'.

':7: The formal object Oresult* is assigned the difference betweenthe two operands, and control is passed to the next statement

with an open guard.
8: If 'result' is positive, control passes to the next statement

despite the guard value. If "result" is negative, control
- passes to (9:) and the value of the guard is considered.

4. 7

• ?'.."-0 '.. .."-*'.*. ".... ."% : ,'-:":' ';,"



*. ..' 9: If "result" .s negative, or considering the previous statement
nonzero, the value of 0 is assigned to "result" and the block
is terminated.

10: Otherwise, 'result" is assigned the value 1,
11: and the block is terminated.

12: The t>t operator is defined to require two operands of the
class *component" which are given the formal names 'operand1'
and Hoperand2'.

13: The result is named "result" and is of the class 'component'
as well.

14: The defining block opens by assigning to result the difference
between 0operandi' and "operand28. Control passes to the next
open statement: (15:) if "result" is positive.

15: If "result" is positive, it is assigned the value 1 and the
block ends causing the operator to return the value of
*result".

16: Otherwise, result is assigned the value O,
17: and the operator 'I' returns the value of "result".

18: The ,9, operator is defined to require two operands of the
class "component" which are given the formal names "operand1'
and "operand2'.

19: The result is of class *component* with the formal name
*product'.

20: 'product" is Initialized to the value 0, and control passes to
the next statement without a closed guard.

21: 'sign* is initialized to the value 1, and control passes to
the next statement without a closed guard.

22: If 'operandi' is negative, control is passed to the unlabeled
block, 'sign' changes sign, and control passes to the next
statement (23:). Otherwise control passes to the next
statement without a closed guard.

23: 'operandi' changes sign.
24: The current block ends, and control passes to the next

statement without a closed guard.
25: Similar to (22:) with 'operand2w replacing 'operandi".

26: ' ' (23:) ' ' V "

27: ' 0 (2:) H V

28: If 'operandi' is equal to 0, 'product" is set equal to 0, the
block is terminated, and "product" is returned to the calling
actor.

29: Similarly, 'operand2' equal to 0 causes the same effect.
30: A new block is opened, and the guard vector is evaluated.

'operandi" is decremented, and 'operand2' is accumulated into
'product'. If 'operandi' is greater than zero after it has
been decremented, then control passes back to (30:) for
another guard vector evaluation. When 'operandi" finally is
nonpositive, control is permitted to pass to the next
statement.

31: Each time the block is entered, the guard expression is placed
into the evaluation queue. Once the iteration is done,
control passes either way through this statement to

77



32: close the current block. Control passes to the next statement
"-*' without a closed guard.

33: If "sign" has a negative value, then the sign of "product" is
changed.

34: The defining block is closed, the file terminated, and
*product" is returned to the calling actor.

N For completeness, the division operator is also defined in terms of

the kernal operators without elaboration. The working part of this

-N algorithm must be executed sequentially in contrast to the

multiplication algorithm in which portions could be evaluated

simultaneously. Compare how the block is used to enable parallelism in

lines 30: & 31: with how it is used in lines 46: & 47:.

*** code segment 0*

35: / " in component: numerator, denominator
36: out component: quotient
37: (quotient a 0;
38: divisor mu 0$ divide.by.zero .. --error

- 2 39: sign 1;
40: -numerator $( sign a -sign
41: numerator x -numerator
42:
43: -denominator ${ sign x -sign
144: denominator a -denominator
145:
46: ( numerator a numerator - denominator,
47: $ quotient v quotient + 1 \ "" sequential
48:
49: -sign $ quotient a -quotient
50: }.

Zd I major motivation for decoupling the language, as has been

illustrated by this example, was to permit high performance special

purpose hardware to be easily introduced to the architecture in a user

transparent manner. I user may define his own comfortable component

class and a set of compatible primitive operations. These need not be

a' simple nor disjoint with respect to each other. This done, the

78



language specification can be used to build and verify hardware.

The core hardware architecture may consist of many asynchronous

processors working on different aspects of language interpretation.

This permits inexpensive hardware to be exploited via a form of

parallelism Inherent in the language.

This last feature is rapidly becoming common in contemporary

architectures; the contribution made here is that a reasonably high

level language is supported as opposed to a virtual memory paging

scheme, or a communication protocol, or a graphics standard, or an error

detecting and correcting algorithm, and so forth.

In a normal environment, it is likely that a user would only need

to select a component. The system would already knMw about components

and know about vectors. The effort required to obtain a result would be

Aquite a lot less than that expended here.

This discussion did develop five positive and unique

characteristics of the proposed language:

1] when parallelism appears in algorithms, it is naturally
exploited by D;

2] when algorithms are generic in character, so are their D
instantiations;

3] although the basic set of D objects is quite small it can be
easily extended, with notational support, to communicate with
users on their own terms;

41 the language lends itself to exploiting the capabilities of
special purpose dedicated function hardware specified by the
user; and last but not least

5] the language lends itself to interpretation by multiple
asynchronous independent tasks offering the potential of
unleashing the latent capability of emerging microelectronic
technologies.

79

.C9. .*-" .
,

.
' ' '

4.'',"° . .. P '' - % . ,- ". P4," '""Vi, ,.-' * V I
, , ,"," I, , ",. ""''



PU ROMMAING SUPPORT 1EQIRMNTS

The program development environment currently envisioned to support

language users is described in this section. First, the various

language formats will be motivated and discussed. Second, development

aids will be described. Third, the process of creating a hardware

instantiation of a compute bound actor will be elaborated. Finally,

some comments will be made about the language in a multiprocessor,

ultitasking environment.

The purpose of this section is not to specify what should be

eventually implemented, but to share ideas.

Formts

A D program, in the course of its existence, is required to exist

-in three formats. They are the U= format, the A1rMM format, and the

nX ±Qn, format as depicted in the following figure.

4---- + .mass User

I Storage I <W> Memory Port <> I User I

- I <-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-<-- I 

-~~~~~~>>>>>>>>>->V > ">>>>>>>>>>

"* Language I Execution I Processor

Figure 2: Language Formats.

The most important format is the human readable format, which is

the format normally discussed by us (humans). Since the execution unit

is not modeled after the human brain, but after the D language, it is

80



reasonable to expect that a different form might be optimum for

execution, and it is. For example, the execution unit does not need

multi-character key words, nor object names with many characters, nor

(by definition) comments.

The second format Is the forat in which the program is stored.

The motivation for the storage format is two fold: to permit the user

format to be reconstructed, comments and all; and to enable efficient

generation of the execution format.

At the User Port, which may consist of a video terminal, the user

format is translated into the storage format. The language is

fragmented, and a single language 'file' is broken into several modules

and tables. For example, ooments are removed and are replaced with

comment markers, a comment table, and a comment file. The comment file

contains the commoents, the comment table connects the coment markers to

0the comments, and the comment markers identify where the comments belong

in the source file. Similar manipulations are performed on object

names.

A source file is listed by the system in cannonical form. Although

the system will understand various input formats, it expects the user to

adapt to the oannonioal output format. Users must learn to appreciate

the Rfreew pretty formatterl

When a program is to be executed, the storage unit sends the

requisite files to the execution unit less extraneous markers, tables

and files. In the storage format, as opposed to the execution format,

object names that the user defines are used to establish a

correspondence between files. If two files reference an external object

of a particular type named Nvariable, and if both files are visible in

81



the same context, storage symbol tables will establish that both names

reference the same object by comparing the characters which constitute

their names.

In the execution format, the names have been stripped away leaving

only tokens which serve as indexes to tables. When files are converted

from storage to execution format, linking between the currently active

token tables and the files being converted occurs. The figure 3

illustrates these ideas.

The important Concepts to grasp are that the Editor and the Linker

(which is more akin to the software which implements virtual memory, at

the semantic as opposed to binary level) are seantical in ze

and that this intelligence is used to manage the program development

environment.

i i information removed
4 User I
I Format I
I 1 Comments, Punctuation

Editor ---------- -...... ,3 =""8===>
I & Keywords

I Storage I
I Format I
I I Comment tokens,

Linker ..... 4.-----...-+=-.u3-- 22> >
I Symbol Tables, Names

I Exeoution
I Format I

a.I I

Figure 3: Storage Format '.3nversion.

I corollary of this observation is that the functions served by the

Editor and the Linker are *hardware* in the sense they are immutable in

the context of the language.

82



It in probably optimistic to expect users to sit at terminals and

type error free eode into the Editor. By forcing the editor to format

the source text in a meaningful way, major classes of errors simply

cannot be made. It is suggested that in the context of currently

popular video screens, the feedback to the user be from the storage

representation. Each keystroke Must be meaningful. Excellent error

diagnostics are also facilitated by these features and should be

provided.

Two classes of errors cannot be checked at this stage; naming

errors and algorithmic errors. Special consideration should be given to

displaying the names of a file, arranged in a meaningful way.

Applications which reserve certain names, including operator names,

should be able to extend the editor Using the modules Used to extend the

language. Algorithmic errors will require a trace-debug capability

described below.

* In several instances mention has been made of a macro processor

[Cole 813 which would permit the more or less permanent features of the

language (punctuation) to be altered to fit specific user requirements.

In order to preserve the extensibility sought in the language, this

processor must be implemented in the Editor, and must work

interactively. Essentially, the semantic gap between the User and

storage formats will increase slightly.

If files are to be listed, provisions can be made to recognize the

macros. Problem can result from entering a program with one set of

macros, and then listing it with another set. If this appears a rare

occurance, consider a person who desires to look at the source Of system

83



p e

utility. For this reason, macro processing should only occur during the

editing process. Listings will always appear in the cannonical format

of the architecture. Another appearance of the "free" pretty formatter.

The trace-debug facility should permit a program to be run

interactively, with full access to the runtime structures using

character names. The actual runtiMe structures should be used; not a

simulation of them. Although initially increasing the amount of

information which must be understood by the programmer, this additional

information will permit much more efficient debugging = provide the9.

programmer with a better insight into the logical processes of the

architecture.

The last feature that is required to support efficient program

development is a library manager. Since the language will fragment big

software programs into myriads of tiny ones, automation must be

available to manage them all.

hr.ware LMDIn t JL&n

The software tools just described will facilitate the development

of actor definitions. A major objective of the architecture is to

address applications which are computation limited, and which can absorb

the capability of the emerging custom microelectronics capability.

Once a function has ben defined, and tested, a special function

unit can be designed and tested by simulating the unit with an actor

communicating via the accept function and return statement. Such an

actor has a scope independent of the calling actors, and can consist of

multiple processes, or actors, itself. Each of these may be in any

stage of development, definition through hardware.

.84

?,'

-S *S -



* When a suitable actor has been defined, a detailed functional

description of the chip is available at the =~ level. In addition, if

algorithm are decoupled into control intensive and computationally

intensive portions, the computationally intensive portion can be

instantiated into hardware. The control portion of the algorithm can

* take full advantage of the language processor.* In most cases this Will

be significantly faster than implementing the algorithm directly as a

single hardware function.

The motivation for removing control is to permit the hardware

design to take advantage of regular design structures. This will

simplify the design while increasing performance and reliability.

Memories, and other arrays Of small equivalent functional blocks, are

preferred to personal design triumphs. The idea is to keep the user

defined hardware simple enough so that a compiler coupled to a generic

chip architecture can handle the design.

In a sense, the language defined by this thesis could be considered

the functional part of a hardware design language.

Multitasking within the language is a natural consequence of it,

and needs no special discussion. Even single tasks often create many

internal tasks which execute simultaneously.

The coordination of multiple processors does introduce some

problem not yet described. Considering the Most general case of an n-

J1%j edimensional ( n 10,000) net of processors, storage files must be used

(in conjunction with some form of capability based addressing) to

~. translate execution formats between processors. The entire system

85



RD-R138 433 A CANDIDATE PROGRAMMING LANGUAGE-(U) AIR FORCE INST OF 2/2
TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING
R JENNINGS DEC 83 AFIT/GA EE/83D-1

UNCLASSIFIED FG92

EohmoEmolhsiEEhhhh~hhhh i7



7 V

111 1,.0 IU--- III
-I'. *

p1-25 LA111.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

. ** . - . ........



cannot have a single token table for all objects. Each processing node

Must maintain its own symbol table.

The Bus Interface Unit is given the responsibility of maintaining

the files in their pseudo-storage format, and performing the conversion

to execution format on the fly. A generic processor is illustrated in

the following figure.

to \ / to
other nodes \ I /other nodes

\ --- /
/(std] \

- --- ----- BIU - - - - - - - - - -................... / x

I I data
'IvII II

%_ _.I I control ._,_ .
ISTORAGE I .. ___V\ ...... I ACTOR I
IHARDWARE < .-.- I Language I ---- > HARDWARE
I [std] 1-----> Processor <----I [std] I
I .I I (kernel) I I ........
I I I [std] I I I
I I _ I
Ifuser I Iuser I
I defined I I definedl!
1 data I I

II

Figure 4: A Multiprocessing Node.

The important message of this section is that the task of

presenting a consistent, comprehensible, and complete view of the

internal structure of the proposed architecture to users forms an

implicit constraint upon its design. The method of providing

prograing support to the user has been, and continues to be, an

Integral part of defining the architecture and the language.

86

,"i rr.''''',2 ', ," ,,'" " ""''"'.."'..--",' ."e -,- - '""'e" -' ' - .



*Even though it has been argued in this thesis that hardware should
be designed to support the language, the capabilities of hardware have

significantly motivated major portions of the language. To insure that

hardware can efficiently support the language, it is imperative to

define a language which in be so supported. The purpose of this

section is to motivate three portions of the language which were driven

by hardware considerations.

The utility of this section to the thesis is threefold: 1) it

provides rationale for what milt otherwise seeM esoteric syntax; 2) it

provides insight into how the language is put together; and perhaps most

important 3) it should serve to mitigate (if only slightly) exclamations

of *it can't be implementedl!

The three basic hardware related problem which were encountered,
.

and will be described in this section, are 1) defining an application

independent kernal to interpret the language, 2) developing an efficient

control structure, and 3) catalyzing the exploitation of special purpose

hardware constructed from Very Large Scale Integrated (VLSI, spelled

VBSIC by the DoD) circuits. In each of the following three cases the

problem will first be summarized, and then the proposed implementation

model will be described. While this section will fall considerably

short of defining the structure of a D machine, it should provide the

major insights required to attempt a D machine design.

87

w . . . . . . . . . . . . . . . . * ....-- .-4 . -.V " , " o , , - . , , ' . .-.-, 4, . - - -, -. 4- . % 4 .. --, - . *- . , -.-



Conventional computers achieve their general utility by including

huge numbers of instructions, occupying microcode or incorporating logic

that is seldom used. The Reduced Instruction Set Computer (RISC)

developed at UC at Berkeley [Patterson 81] has focused on this

inefficiency, and now a commercial product is available which has a

limited instruction set and extra general purpose registers. It is

claimed to be twice as quick executing PASCAL and C programs [Morrow 83]

* as "traditional 32-bit computers".

Why not use this as a kernal? The objectives of tis thesis are

not met because of the limitations of C and PASCAL. For examples, type

independent algorithms and parallelism cannot be adequately supported.

In retrospect it is obvious that if it is known, apriori, that only C

and PASCAL will be used on a machine, and that C and PASCAL require only

a subset of the machine's capability, a simpler machine could be used to

support C and PASCAL. In the context of a given technology simpler

* machines are faster mohines.

The objective here Is to move in the other direction; to

unoonstrain programmers and let hardware support what ever they want,

while at the same time unburdening them of excess complexity. The

excess complexity required to meet the requirements of some other

application which must be supported to sell the requisite number of

machines to justify development and production tooling costs.

The desire is to provide the smallest common denominator each user

can live with. In the context of the utility measure discussed in

section 11 of this thesis the smaller the denominator is, the greater

~ ~ :.the incentive will be for widely adopting it.

• " 88

; %. -. . , . .-.-.-.... ,..-..,-.-... ., , . ., .- . ...- p-. ** *-.. -.., ... -.,-, *- a- . .-.. .



- S .~t - .l~ -t . . t.

The basic purpose of any algorithm is to manipulate values Of

objects. These manipulations are inherently application dependent. The
approach taken toward finding the smallest common denominator for all

people who want to develop and automate algorithm was to develop a

language which would permit the iAM definition of tokens within an

expression. In addition to serving users better, this saved a lot of

effort trying to guess what such a set of universally useful tokens

might be, and then developing them to provide to users as a 2AAgMM

f set.

With great humility it was realized that language users,

irrespective of the language, generally know more about the structures

they need to support their application, than do the original language

designers at the time the language was designed.

This decision made, the language can be partitioned (as it has

been) into a part ommon to all language users, and a part specific to a

particular application. The conmon part consists of defining the tokens

which constitute expressions (static object names, literals, operators

and functions), and the structure required to meld the expressions into

meaningful algorithm incorporating conditional execution and dynamic

context management. This part is the part of the language which all

users must use to describe the algorithm they want to implement, and the

abstract concepts they would like to use within expressions.

The second part Is expression evaluation, which is almost purely

subject to the needs and requirements of the user. Before the

expression evaluation is described, it should be noted that two

questions arise: 1) what should the control structure look like? and 2)

89



how should operators and functions be modeled so as to permit the most

common functions of an application to run fastest with VLSI support?

The following figure illustrates how a subexpression, A*B, is

evaluated and assigned to the temporary variable C. To the common part

of the language, a token representing an expression is simply a token

representing a value. In some cases, for example a nominal guard

evaluation, the value must be converted to an integer before it is used.

To obtain the value, the language model requires that the

expression list, consisting of tokens representing actors and static

objects, be placed on the evaluation stack. In the figure, two versions

of this stack are presented. The ±nUZA. stack shows the name tokens

(e, A, B) which are on the stack at the particular moment we begin to

watch. The nanJ stack shows the temporary token (C) which holds the

value produced by computing AOB. The action to be described is A 0 B

> C in the midst of a larger expression involving the name tokens (A

again, e, O, ) and more. A name token does not refer to an object, it

is just shorthand for a particular name. Consequently, it is not

associated with a name or a class.

What must occur first is that a subexpression must be recognized to

be ready for evaluation. In this case, 0 is recognized to require two

argumenta, of a particular class, which A and B are. If A or B were

different classes, then activation of 0 would be preceded by a class

conversion. Since everything is ready, a transaction identification

number, OtransJd), is assigned to the operation, and an internal object

name is created, C, and a result tokenp <rtoken>, is created for the

result.

90

*:.r *.qg -.- ~ % :$:f<f2t V% ~



31. ~-- -77.y -J -. ; -. 7-T

initial stack final stack

<tranajid> A..I..A.I

<o IokI I.......Jd.tkn 1 ..........

I A I~~~kn 1-
Ii iikn> I A I

II .............J II<trmns~id>
II 1.1 II<d..token)
I I I I <d..token>
11 1 1 <r...token>

+->I Control I 1

4..--~uuII I Queu

a +.4lunotionl I
U I 1-.4a> #1 1II

uI II<tran...id> I
a I I I Ib..id> *\/uuuuOa 0

+.QunotionI 11 1I 11 1
.1 #2 11 I1 1I I

I .---.u> I I -\/---<trans.id> I
I I I I I<raw> I

11 1 I I Data I<data> I STORAGE

11 1 I I Queue I I

I .---- <IuuI lI<transjLd> I
N .- QFunotion I 1 I.---- <cooked> I

I #n 1 II <data> I

<bLid> +%Banana 0 0
<data>

Figue 5: Exprtmion Evaluation.

91



A message is sent to STORAGE where the values of all the objects

are held which consists of <transjd>, the two <dtoken>'s, and the

<rtoken>. In other words: fetch the value associated with the

<dtokens> and put them on the Data Queue to be referenced by

<transd>. After this is done, forget about the <d.tokens>. When the

result comes back, assign Its value to some temporary object which will

be referenced in the future by <rtoken>.

When STORAGE can produce results for the <dvalue>s they, with

<trana..id>, will be sent to the Data Queue.

Simultaneously <transid> is sent to the Control Queue with the

<optoken>. What occurs here is essentially the problem alluded to

earlier. As will be described in a following subsection, a dynamic

-. symbol table links the <optoken) to, in this case, a hardware special

function unit which is identified by a hardware id, <h..id>. This may

not occur immediately, but will occur when the hardware unit is

available, and <trans..d> has the highest priority of all the waiting

transactions.

When the hardware unit is allocated by the Control Queue,

-* <transjid> and the just identified <hid> are sent from the Control

Queue to the Data Queue. This enables the Data Queue to put the data it

associates with the transaction on the proper bus and to wait for a

result.

When the hardware unit is done, it sends the result back to the

Data Queue and a ready signal to the Control Queue. The Data Queue

attaches the result data to <transid> and sends it to STORAGE. If

STORAGE has somthing else to do with it, it is routed back to the Data

%4 .Queue as data in another transaction. If not it is stored, awaiting

reference, accessible via the token <rvalue>.

92

I'S



Three important things to understand about this scheme are: 1) it

. :. maintains the partition between the common part of the language and the

user definable part; 2) it permits subexpressiCns to be executed in

parallel, but in sequence when required; and 3) it breaks up the

expression evaluation process into many smaller processes which

asynchronously cou=n cate with each other.

frcbln 2U. Atnal~d contrl

There has been much debate about whether Zo=e statements are good

or bad. People who avoid them claim, and rightly, that they can be used

to write code that is impenetrable. Why, one wonders, is this

capability a requirement for contemporary programming languages? The

answer is that conventional structures are not powerful enough, or at

least they are not elegant enough.

Although it is not widely publicized, some programmers (at least

one) are also frustrated with the if-then-else construct which appears

benign enough in programing texts. Out of the isolation of a trivial

example, with five to six (or more) of its esteemed colleagues, one is

faced with, again, impenetrable code. Most language designers have

attempted to mitigate programmers' frustration with conventional control

structures by providing several different structures, often blending in

iteration control as a lagniappe.

The objective is to find a comprehensible way to tackle iteration

and conditional execution, and to do so in a way that it could be

Implemented efficiently (using the smallest address space possible), in

the context of the solution to the previous problem.

93



The approach taken was to extend the properties of the "block" in

two significant ways. A traditional block is a series of statements

which are executed sequentially, and each block may modify its scope by

Introducing local variables. A D block can be thought of in a similar

way, with each statement 1) preceded by a suw3L exression and 2)

followed by a .

This has the effect of making each statement of the block a

conditional statement (covering conditional execution), and a "goto"

statement with a limited jump capability: control may be passed to the

beginning of the block, the end of the block, the next statement

(regardless of the guard value), or the next statement with an open

guard. Blocks can be labeled, and the labels used to place the jump

commands in the context of any enclosing block.

In contrast to the traditional panoply of control statements, this

extended block structure is simpler to understand and to implement -

despite being considerably more powerful. The implementation model is

depicted in the following figure, and consists of a block stack, and a

block table.

A.'=
N!

94

%*- - .V. %,% . *- V V .V.. Y ..~' '.%. ... '.' ' . 5 *V1- '-.'-= %,%= ,, .,*V ,. .* "'



BLOCK
STACK

i<blook n> i <aa8.= current blockI •

l0look 2
I blook 1> 1

BLOCK TABLE

iblock n> I Block State: <line> I
I <blockltype>
I <opeuexpression>
J <guard_xpression_..it> I

1 1: <guard 1> <statement 1> I <label 1) <ant 1> 1
I 2: <guard 2> <statement 2> <label 2> <cant 2> II I . I. 1. . I
I I . I. a. . I
I 1 . I. I . . I
Ia: <g u;d m> <statement 2> <label 0> <cntu>

:A 4gure 6: Block Execution.

The Block Stack keeps track of the current block which is active.

ithin a task, or single invocation ot an actor, only one block can be

active at a time. When a child block is entered from a parent, the

child block's identification is pushed onto the Block Stack and becomes

active. The parent's Block Table is saved until the child block is

done. When a Block Table is saved, the current line number serves to

continue the block state when the Block Table is recalled. In the

figure, the current block is identified by the token <block n>, which

appears both In the Block Stack and on the current Block Table.

The block type influences how the guard vector of expressions and

values is treated. In any case upon entry into a block the open

expression is sent out for eva uation followed by the list of guard

expressions. If an n f the guard list returns a value equal to

95

"4. . , , ...



? .- that returned by the open expression, a value of open is entered in the

Block Table.

Normlly, (no (?) appearing in the user format), each guard value

is considered in list order to determine if control should pass to its

following statement. If it should, control passes to that statement

(even if all the guard vectors have not been evaluated); otherwise it

waits for guard on the next line to be evaluated. The block cannot be

left until al guard expressions have been evaluated.

The other type of block, (a (?) following the block label), passes

control to the first guard, regardless of its position on the list,

which returns an open value. Should the block end, all pending guard

evaluations are flushed. If the block is saved, guard evaluations

continue.

4 In the Block Table, a guard has the value of 2 closed, or

unknt,. Each statement essentially consists of a block token,

indicating entry to another block, or an expression token. All

statements, with the exception of blocks, can be reduced to expressions

with language defined functions.

The label field contains an optional block identification. The

continue field contains a block label and a token which determine the

%.. thread of control.

Unless the statement consists of a block, the only action taken by

the JAngwM araagusn is to put an expression token onto a queue for

execution. In a compute bound system, one such processor can handle

several tasks. After putting the guard list of the first task on the

execution queuep it can start on the second task's guard list and so on.

When a guard from a higher priority task returns an open value, the

96



processor saves the current task upon which it is working and spoos

,'. expression tokens onto the execution queue from the first task until it

must wait for another guard to be evaluated.

-- It should be apparent that execution time is dependent upon how

fast special purpose hardware can perform its function; although this

language does require overhead it does not effect, to the first

approximation, elapsed time required for execution.

Prob"le. _4,L = Explitation

A natural consequence of most "extensible* languages is that no

matter how well the new functions can be implemented into the language,

unless the hardware supports the new structures efficiently, slow

execution speed precludes widespread acceptance. The emerging

performance afforded by custom VLSI [Foster 801 at affordable cost

i offers an opportunity for users to customize their hardware

configuration much as they have customized their software. In stead of

forcing users to purchase entire machines to obtain quick execution of

just one algorithm, for example a Fourier Transform which is both

ceneri and has a wide enough user base to Justify the development of an

5'." entire processing system just to support it, the idea is to permit users

a path to a quick (VLSI hardware) version of one of their on compute

bound operators or functions.

. What is sought is akin to a switch on an woptimizing" complier

which says: optimize the hardware as well as the software.

Contemporary architectures are a long way from this as evidenced by the

'I dearth of software which is able to exploit the plethora of fantastic

5hardware available to augment the IBM personal computer, and its clones.

97

ft o e • ... S . • -. • o** .*.. . .. -.. . . . . . . - S .ft" o . . . .*' , . . . ., . .. .. ... .. * .. . . .. . " . . . ... . .,..-....,... .•.



The problem is epitomized by what it requires to get standard compilers

to exploit the capabilities of the 8067 (floating point chip) which was

designed into the IBM-PC, simply to speed up a common function.

Actor kmaa
In D a standard linkage convention is imposed for actors which are

supported by hardware units, for actors which are supported by accept

statements, and for those actors which have only been specified within a

definition file. The following figure illustrates the processes which

contribute to the meaning of a transaction. A transaction

identification token, <trans..id>, is sent with an actor token,

<act_token>, to the Control Queue. An <acttoken> can be either an

<optoken>, as it was in the previous discussion of expression

evaluation, or it may represent a function token.

An actor token can reference a hardware unit, a task hung on an

accept function, or an actor definition. An actor instantiation must be

visible at the time it is invoked. Hardware hides waiting tasks, which

hide definitions. Linkage can be used to override this architectural

bias.

5.4

' 98

.0 40



TASK QUEUE

* ~~~~<tran...id> ________

<acttoken> I--
I[ I waiting >UZI

\/ _ . I e I

Control I I II
I Queue I '

Actor Symbol Table I I Linkage Table i I
I (context dependent) I <task.d> I|
.. <taskid> I - t -

II I m'wp III Hardware: I .I
10 1 I>xz>l Available I

I <acttoken> I <h.id> I I Hardware <.<

I . .... . ... I--I -<-------i

Accept: I " ... I
I Il>uz>I Tasks Waitingi 11

*!I<act-token) I <a...id> I 1 11 1 at Accept <z<I

I I- --- -- "+----I<<----*-- I <dJd>I
I • I •I " . . . . .

Figure i To otor xecution.

Eanch task has its own linkagle table which is used to create three

tables, within the Control Queue, of resources which are available to

execute operators. These tables are changed as blocks are entered and

exited, an tasks accept function calls from other tasks (in a

,.. multitasking environmont), and as hardware becomes faulty, and then

again when the hardware in replaced.

If a hardware unit is available, as described above for expresion
evaluation, the <act_token> s replaced by a <h_d>. Smilarly, if the

1 99

, ' , ."'"","""'." ';"." ".",,. """.' .".", . , .-.. -""' '' ""'",".".". """," , "+", ,,.I. -1+."",'"""''



operator is to be connected to a waiting accept then the <act_token> is

replaced by an <aid> which the Data Queue is smart enough to recognize.

Instead of sending data to the hardware units, it sends the data to the

Task Queue which returns the appropriate result. Should it be required

to invoke a definition to obtain an evaluation, then a <did> is routed

to the Task Queue via the Data Queue which causes a new internal task to

"" be created which will live until the actor result is returned. In this

latter case, a mechanism for inducing parallelism has been described.

Within an expression, each function may define an internal task, and may

be simultaneously active.

In all cases the computed result is returned to the Data Queue, and

subsequent activity parallels that described for expression evaluation.

.

The D programing model roughly consists of three basic ideas

touched upon in this section. Each idea can be thought of as an

independent process which communicates asynchronously with the other

two.

The first works its way through code, evaluating some expressions

to determine sequencing, and Just dumping others to be executed on

expression queues and stacks.

The second takes the expression stacks, and compresses the

expressions to values, making any assignments to permanent variables as

required.

The third is a giant dynamic symbol table that ensures that the

various object tokens, which the various processors use to reference

objects instead of names, always reference the proper objects

100



- . - -. ,.-~.- ~ -: -

F

consistently with respect to the user program. It is acknowledged that

the third example examined only a small, but representative, piece c±

.4. this problem.
4.

4.

~1

4('.*
4.

4'.

'V
*1s~

.4.

-.4
4'.

.4

4.
4.

.4.

'p.

.44.,

4/

4.

'p4.
'(*4.

101

.4
.4.

44 4. %ijp%
4

.. ~.,! 14~ %'~*& %~ %4.' ~ %'4'4'4~.~~%~ - . 'C **s '*~ **~.. -



ML LAZUM 99ALIE

_ Since an -iplementatinal not boo ee-emls (yet) ease form

of analysis should be performed to detonrme It the peposed Lamwe is

workable. The appreeb eeeted Is to pewMde, a tIs aetem, a

eomparisor with te C preiniag a CSImip Te"].

The objetive is to pnos ft a bmis far the aou tie tam

proped laguage Ia both MiLlnJ im to reolaeo Me C

language, yet nmmae to oftlelestly pr tmw iee s e .,

will be dome hmwj. & with e latest to eas U o em uat

the proposed language is as eapOle s C.

The D language wil be diAeeums a t oesest of the C lageO,

following the general format of Me C Mtvemse Sale sa Lt appears

in Appendix A of ',I,-. m C, ]4a T1l. Te •mer,

provided refer to the sectiom of The C atoeremee NMmal. A basic

understanding o C is assumed. To omipletely uaderetad this eearsesre

D should be understood as well. The proble, with eepletely deseribiang

D in this format is that while the format is flae for C, D A a

different language which is more lucidly covered by approaching its

capabilities from a different perspective.

By selecting this approach, as opposed to a rigorous "proof', C

programeers also obtain a quick introduction to the D language in

familiar terms. At the time of this writing, a D environment does not

exist. Consequently, a viable approach to learning D is through a

thorough understanding of C. Computer architectures in general use

change very slowly, and C is unquestionably the language of choice for

current architectures --- so time so spent will oertainly not be wasted.

102

a'
4



A rigorous proof should be attempted using the Ooncept of structural

induction described by Stoy [Stoy 77], and is left as an exercise for

the determined reader.

The C language was primarily developed for the PDP-11 architecture.

Altbough It has been ported to many other commercial architectures, and

been ported relatively efficiently, this should not be interpreted to

mean that it can be efficiently ported to &1. future architectures. It

should be Interpreted to mean that most of the architectures in use

today are similar to the PDP-11 model.

For such architectures it makes obvious sense to constrain the

extensibility of the language to prevent the programmer from creating

complex and inefficient programs. For this reason, C has remained

simple, and is now the language of choice for many programming chores in

1983.

New architectures are not so constrained. The trend is to exploit

special purpose processors for specialized functions. Consequently, if

specialized functions can be isolated and A they can be

instantiated in hardware. Now architectures, including the architecture

suggested by D, supports this approach.

D contributes structurd AZJnDmibi=: the language structures

the user extensions as it does the language kernel. C can also be

extended (which is one of its major strengths) by defining types,

declaring functions, and using the macro-processor included with most C

compilers. The extensions are by definition inefficient since they must

be implemented though C primitives, and do not always benefit from the

underlying structure of the C language.

,. 1:.03
l103



For example, if one is not happy with the implementation of

\~ .,vfloating point in C, short of rewriting the compiler not much can be

done. For those who claim that all arithmetic can be accomplished by

using function calls, it is suggested that users of such an

agglomeration are not fully benefiting from C structure. They are not,

in a pure sense, programming in C but in some bastardized functional

language of their own design.

In short, C makes a great many more assumptions about the

architecture of the underlying hardware than is required. In the

-~ context of Very Large Scale Integrated (VLSI) circuits, D provides an

alternative which is developed below.

LulnaJ. cnvntions (2)

Comments in D are terminated with lines (by line terminators), and

consequently are more limited than those provided in C. Is will be

argued in many cases below, a macro processor can easily extend the

features provided in D sufficiently.

Identifiers may be of infinite length, limited only by the line

length and comprehensibility.

There are 13 reserved keywords in D as opposed to 29 in C.

Literals serve the role of constants. They are names Which start

with a digit or underscore, and may take on values only by

initialization. Digits are predefined literals. Characters are

predefined and my be manipulated via quoted literals, which follow the

C convention. The backslash convention is not implemented as it can be

left to a macro processor.

104



Q b2aA (3)

The syntax is summarized in the appendix. The notation is

described at the beginning of section V entitled "Language Description".

mksa Za a MM (4)

In D the lifetime of each object Is Indefinite. The storage unit

for every variable Is a tile which continues its existence as long as it

is referenced. Within a actor definition, no variables are locally

declared, so they all are 'external" in the C nomenclature.

Automatic variables are limited to the arguments and results of

functions in D. Register variables have no meaning because the D

programmer views an unlimited number of virtual registers which contain

user defined objects, not some arbitrary number of binary bits. To make

an object static, it only needs to be declared in a file that is put

into a system directory. Until its referencing file is removed from the

. directory, or the system is terminated, the variable will remain.

. D supports exaotly four types of basic objects: scalars (which can

be mapped onto a finite set of whole numbers); structures (which are

composites of scalar and structure types); functions; and operators.

All other types must be user defined. This does not mean that each

programmer must write his own floating point package, only that the

decisions made In designing and developing a floating point package have

less to do with this language than most applications.

Classes, similar to C types, may be modified in three other ways:

1] they may be changed into an array of objects of a class;

2] they may be changed into a pointer to an object of a class; or

3] they may be made generic; e.g. the class of an actor's formal
argument is deferred until the actor is invoked.

1105

®rAL**.



.'

' There is no requirement in D for unions since they are motivated by

PDP-11 architectural limitations ... PDP-11's think in terms of bytes,

and worry about word alignments.

Ob.2MM and X1z1iua (5)

Objects and ivalues (short for location of values) are common to

both D and C.

Cm±sna (6)

The concept of conversions in D is in concept similar to the

-: approach taken in C, but more abstract, again because of fewer

architectural assumptions in D. The rule is that implicit conversions,

which may be required to evaluate an expression, may always be made from

a source class to a destination class if 1) a conversion function exists

and 2) the destination class has a greater dynamic range than the source

class. A greater dynamic range is assumed to be equivalent to

-U" requiring a larger block of memory for each object. In C this would be

Uequivalent to permitting implicit conversions if

3izeof(<destinationolass>) ) sizeof(<aource-cla3ss)

Pointers and Integers cannot be mixed in D, because each operator

, .can only accept operands of a single class. If a programmer wishes to

increment a pointer by n objects, n is converted to a pointer value, and

-. then the pointer is incremented. This done by the implementation

implicitly. Pointers are intimately tied to arrays in D as they are in

C.

106

J5 , ,,r~ , ..'.,.. .,. " ,. . . ,; , ,,, . .:,.'."-'-'.". .% . .'.-,.-." ., ... ' .. .3
".

"."., ' ' ., .. ,,.. .j :



VC, Precedence of operators is determined by the right-most operator

symbol of their name. In the BNF description of the operator symbols,

'hi the first two symbols have the highest precedence, then the next two,

and on to the lonely ,9, which has the least precedence of all. This

list represents a modifiable table which should be, not easily, user

accessible in an implementation defined manner.

The order of subexpression evaluation is undefined, and may be

different upon subsequent executions of an expression since it is

determined at runtime. Users define how division by zero and overflows

are handled.

A primary expression is called a <lname> (logical name) in D, which

can result in either an address (location name) on the left side of an

equal sign, or a value on the right side. Function calls, class

modification symbols (# a * in C, * a & in C, [], $) group from left to

right, as does the component selection operator ('), which operates on

structures.

There is no equivalent C -> ) operator, which combines the pointer

and selection operations, since the renaming capability serves much the

same need.

No implicit conversions are made. A name declared to reference a

function will never reference a pointer to that function. An array name

without brackets is the <lname> of an array.

Functions are called with only one argument, which may be a

structured object. The argument may be a pointer to the composite or

the composite itself.

"., 107



16 V Y I - 1 -TV . -

No types are implicitly converted unless the conversion is required

S "for an expression to be evaluated, and then conversions which cause the

least growth of the size of the destination class are attempted first.

All operators except ( , -), acting upon integers, must be defined

in the language by the users. The assignment operator is predefined for

all user defined types, and does perform full class checking. The

language can easily support more complex hardwired functions and

operators, but these must be described within D. With such a

description, should the hardware fail, the function would still be

available in terms of the basic hardware although it would take longer

to execute.

The tertiary conditional operator has no equivalent in D, and was

deemed redundant in the context of the other conditional execution

structures.

0 The comma operator would serve no purpose in D, and no

consideration was given to implementing it.

Dhn~z~s~ana(8)
Declarations in D always reserve storage, although not immediately.

Storage is reserved when the storage declaration file containing it is

copied, and when a storage file is given to the system by the editor.

Components declared within structure definitions may only reserve

storage through storage files. Declarations of formal n or out

variables in actors do not reserve storage until the actor is activated.

.ach declaration may contain an initializer, in fact it ust if a

literal (constant in C) is being declared. Structures and arrays may

only be initialized by one object -- a structure or an array of the same

I108

,'; : '.: , , ,• '.'' ..'''" ''"-. .4::-:'::--" ,. .--' .: --".:-'."..--o2.1L.:.". ;'-'-'-; : '.-



class. Such an initializing expression must be composed from available

operators and predefined objects.

Class modification tokens (#, []) must occur juxtaposed the name of

the declared object, while the ($) token is applied to a visible object

name abstracting its class.

While a C declaration can permit multiple arrays and levels of

indirection to be declared at once, permitting parentheses to define

precedence, D requires that one level of indirection be declared at a

-4 time. In order to efficiently, reliably and unambiguously track

multiple levels of indirection and arrays there appears no better way.

What this means is that what might be declared in C to be:

in t 1, eptr;

M > i a Oeptr; /0 two levels of indirection 0/

in D would appear

int: i, *iptr
> i a #ptr z iptr -" one level

*iptr: #ptr
2> i a ##ptr a #iptr "" two levels

In the C scheme, there is an implied pointer which is not available

to the programmer. The D scheme makes this pointer explicit. This

elaboration also is applicable to arrays.

Bit fields are another anachronism tied to the PDP-11 architecture

omitted from D. To achieve the same effect, scalar classes can be

declared with the requisite number of values, and then packed into a

structure.

Similarly unions and the sizeof construction, necessitated by the

PDP-11 architecture in C, contribute nothing to the D environment, and

,.. ,.> have been omitted.

'4

4109

. . . . . . . .... " * . *. *'" "Y V' , -..,4 .., *- . .. - ..-. ,



Parentheses within declarators are not permitted; to create

multiple levels of indirection and or arrays, multiple declarations are

required. Since C does not incorporate strict type checking,

parentheses can be used in C to approximate these effects. In D the

implicit intermediate variables must be explicitly declared.

*The state definition file performs all the class definitions. In

D, the user I/O format of an object is tied to the object, and is not

arbitrated by a format statement. The effect of a format statement may

be achieved by performing a class conversion before printing.

In C the memory format of the different types is described by the

implementation documentation, and can be exploited by the so motivated

programmer to achieve must the same effect with a library of conversion

routines. In D, the language and the implementation are much closer, so

hooks ust be explicitly put into the language to support such

* flexibility.

In structure definitions, component initializations may be

performed. These will of course be overridden by declaration time

initializations.
(919

Statements (9)

Statements are generally executed in sequence in D as they are in

C. The sequence is controlled by the structure of the compound

statement or block, and not with a set of conditional statements.

Each statement is imbedded in a line, preceded by a guard

expression and followed by a continuation. The continuation serves to

send control back to the beginning of the block, or any enclosing block,

(similar to the C continue; to the end of the block, or any enclosing

i-.

110

.Ile



block, (similar to the C b~reak); to the next statement regardless Of the

guard value; or to the next statement with an open guard. All guards

are evaluated at the top of the block, and they are open if they

evaluate to a positive value, or the value provided by the optional

selector.

Each block is similar to a C switch where the switch argument and

each of the SA values can be expressions (guards). There are no A=..g

statements Within the language, and all sequencing Must conform to this

model. Each such block is labeled, so the continuation can be put into

the context of a particular enclosing block. This is equivalent to a

compound C statement or a C block, with bells and whistles.

The power of the D notation can be seen when it is compared with

the C conditional statements. All of the capability, and then some, has

been integrated into one efficiently implementable structure.

- The other three statements are essentially expression statements.

The first is analogous to the expression statement in C.



Table II: Control Statement Comparison: C vs D

Q S e -'.

if (<expr>) <stMti>; { <expr>$ <stmt1>..
else <stmt2>; <strt2>..}

while (<expr>) <stat>; { <expr>$ <stMt>\
I

do <stmt> while <expr>; f <stmt>;
<expr>$\

switch (<expr>) I D: <expr>
. case consti: <stmti>; { Constl$ <stMtl>

case const2: <stmt2>; const2$ <stmt2>
default : <stMt>; <stat>

The second is called a return statement, but functions slightly

differently-than the C return. Since the result object is explicitly

declared for each D actor, the statement *return <expr>, assigns the

*" value of <expr> to the result object, and then executes a actor

termination returning control to the calling actor. If the actor call

. was serviced by an accept, the servicing actor is not terminted.

The third incorporates the alloc function of C into the D language

with a keyword Of its own. The statement 'new <pointer..name> a <oxpr>u

creates a new object of the type <pointername> points to, assigns

<pointer..Aae> to its address, and initializes the object to the value

of <expr>. To dispose of an object, all references to it Must be

• .,eliminated. Immediately after a declaration, '<pointeriame> z null'

would dispose of the new object.

The latter two statements are considered language defined

4 -functions augmenting user defined expressions. Neither function returns

a result to the invoking task.

112



P. .~ 7 V

ZZL~rDefiLnitio~ns (10)

In C all files are more or less created equal. In D there are A.cur

types Of tiles: files in which passive types such as integers and

structures are defined, files in which active types such as functions

and operators are defined, and tiles in which all types of objects are

declared, and which are responsible for allocating storage. Then there

are files which essentially serve as libraries of other files which are

related in some way, and which are usually referenced together.

In most cases, D objects are defined and declared externally. That

is, one tile established a link between a name and a storage location

(declaration), another file determines how to interpret the value stored

(state definition), and yet a third file determines how actors

manipulate static objects - or how names are manipulated within an

algorithm. In C, most objects are either declared in the same file they

are used, or labeled extern causing the compiler to link the name with a

4.. declaration in another file. The concept is the same, but D has

extended and regularized it.

For a particular algorithm, all the state definitions need not be

in one file, nor the actor definitions, nor the declarations -- hence

the motivation for the library, or bundle, tiles to organize the

otherwise intractable plethora of little files.

Much of the power of D is a consequence of the ability of the links

between these files to be forged at what conventionally is called

"runtime". The modularity which provides C with much of its capability

to support large software projects has been conceptually extended to a

Vhigher level of abstraction in D, permitting user defined objects to

K. enjoy the support of language defined objects: free use of operators,

113



oJ.

simplified I/O, and object transparent actors (algorithms written in

terms of formal actors and formal passive objects which are object

independent); to name three important features.

scop JLkA (11)

Lexical scope rules are similar to those of C, except that object

declarations are introduced indirectly by linking to declaration files,

or bundles naming declaration files.

As previously mentioned, most object names are by default extern in

the C sense, the exceptions being definitions defined and used in the

same file, and initialization expressions composed of variables also

declared and initialized in the same declaration file.

Privacy from other files can be obtained by copying, which obtains

a private copy of the file and all the objects declared within it. If

the variable is subsequently referenced by an object in a file disjoint

from both the declaration file and the acting file, its life becomes

independent of the two. This construction meets the needs served by C's

static variables.

The alternative method of obtaining access, sharing, serves the

purpose of of providing a communal set of objects accessible to several

functions. This meets the needs served by C's external variables.

Q2a11M ContoLLj= (12)

Comments have been made in several instances that features of D

have been omitted because, if desired, they could be implemented in a

macroprocessor. Compiler control lines are an obvious example of such

features, and are deemed to be outside the scope of the D language.

This does not mean that such a tool would not be part of the D

11~4

.7

.. ..... ,- ...... : n " :i '** **. , .°- ', ." J . . - "



'.'

development environment, only that it is not part of the language.

An accurate analogy would be between the instruction set of a

microprocessor and the capabilities of the software designed to support

program development upon it.

p4.1= (13)

There are no implicit declarations in D.

TZme eisite1dhLg (114)

Unlike C, structures in D are equivalent to other types and no

limitations of any kind are imposed upon them.

The implementation hints provided in this section (of the "C

Reference Manual") are not relevant to the D programming model because D

does not sacrifice conceptual clarity for implementation efficiency.

The motivation is to use VLSI to pay for a conceptually elegant

programming model.

iQ"tWL Exrma1QD (15)

The concept of a constant expression arises when the compiler must

be able to determine values of expressions. In D this is not a problem

since all expression evaluation occurs at runtime.

Zprlah±J±t oonsideratlona (16)

Historically, languages have tended to have a much longer lifetime

than computer architectures. The philosophy motivating D has been to

let the architecture of the language drive the hardware (within the

limits of VLSI). Consequently, by design, no consideration was given to

-4.. portability of D to conventional architectures. Such an exercise is left

S .. as an exercise for the reader, to be accomplished after using structural

115



.4

induction to formally prove that D is both necessary and sufnicient Jn

context hL I conventional aronxoa ture. (It is admitted that "the

ice is thin here".)

hnalrM2aUML ( 17)

To be determined by future users.

AmLaz smn=r (18)

The syntax summary provided in the appendix of this thesis should

provide a basis, with very few exceptions, for implementing the
.4.

• .language.

Features n .ACuJ= .A f.

Learning should be in the context of computer programing, and it

should not impose a burden. The language itself should facilitate the

13 organization and comprehension of concepts and data.

The flaws in C, and in all o the widely used "higher order

languages*, are that only limited abstract concepts, types, are

effectively supported, and generic algorithms are not supported at all.

imilarly, there is no support within the language for exploiting

special hardware. While C aficionados may produce code which supports

either of these objectives, they are in effect programing outside the

language.

D does explicitly support generic functions and operators.. In

fact, because passive and dynamic objects are defined in separate files,

all algorithms are basically generic. This is not a consequence of an

added feature, but is a characteristic of the D language model. The

apparent user benefit is that user defined types and operators are as

116
,.- -. - -

.4- * .. 4

",b .iV . .~V ~ . .'.



.1*7

easy to use, in terms or efficiency and syntax, as those built into C.

In addition, special purpose VLSI bardwired functions can be easily

linked to user defined operators.

The second major extension concerns real time support beyond bit

manipulation. The basic control structure has a real time flavor in

which the guard vector may consist of expressions containing the

language defined accept function. Control is passed to the statement

following the first (in time) open guard, regardless of its position in

the block. While this structure might not always minimize interrupt

response time while a background task is executing, it is fast, it is

reliable, and it is a structure very much a part of the language model.

At this point it should be apparent that D is a functional superset

of C, and that there are solid reasons for seeking to extend C.

A Although C is a widely used language which currently defines the

contemporary programming environment (circa 19814), it should be clear

from this section that future technologies currently becoming available

to implement computer architectures permit beneficial extensions to C,

as described above, to be envisaged.

0** 117



ILL CONLSIONS

The basic motivation for this thesis has been to explore the

optinality of current information processing systems in the context of

current processing needs and current implementation technologies. This

has been accomplished by proposing a superior method of employing

automation.

- Three topics need to be discussed to conclude this discussion: 1)

what is the best path to a functional demonstration of the proposed

system; 2) what other work is required before the full potential of the

architecture is realized; and 3) what is the current motivation to

continue with the effort.

The user format of the language has been defined, and is described

in this thesis. The storage and execution formats have not yet been

defined, and must be before the language and hardware are finally

defined. These tasks consist of creating tables to represent the four

file types in storage, and creating transformations which represent

action in the language. Generating these tables may require a final

iteration of the language, and will suggest a complete hardware

configuration.

This task may be facilitated by creating a D compiler and support

tools for a conventional architecture, and then Using this software for

simulation and testing. Another alternative would be to breadboard, with

TTL and microprocessors, a kernel with hooks onto astandard bus (e.g.

3-100, Multibus, Q-bus, or the IBM-PC bus).

4.. 118



Using a conventional microcomputer system to handle tbe basic

housekeeping chores, and a special purpose hardware unit to interpret

the language and interface With some representative special purpose

hardware would maximize the utility function for the greatest number of

potential users. The language would be executed quickly, and the

incremental cost at a language System would be low.

FuMtur yor

The reliability of the architecture needs to be put on a firm

basis, and methods of object referencing need to be developed.

Reliability can only be assured if a firm axiomatic base is

provided for the language and if hardware failures can be effectively

V contained by the architecture. Structural induction and denotatianal

semantics (Stay 77] may provide an approach to establishing an axiomatic

base. Fault secure hardware design techniques predicated on forcing the

interpretive portions of the architecture to fail saafely. that is to

provide no meaningful result before a result which could be

misconstrued, offer hope that hardware failures aa= be contained.

Object referencing should be handled as object manipulation has

been; as an application dependent part of the language. A logical name

is analogous to an expression.

It has been clearly established by this thesis that current

computer programming methods are cumbersome and unreliable. New

directions have also been described which may result in a new generation

of computer architectures enabling a revolution in the capabilities of

information processing systems.

119

S!'0..



The basic motivation to continue with the development of this

S. architecture is primarily to achieve the promised nirvana. A secondary,

and perhaps even greater motivation, is to become more familiar with the

enormous impact that architectural structures have upon reliability and

efficiency.

The literature abounds with innovative new hardware architectures

(including data flow, systolic arrays, operating system configurable

architectures and heterogeneous element processors (Dennis 80, Foster

80, Kartashev 78, Smith 78]) and proposed programming languages

(including VAL, Edison, Ocean and Modula-2 [Ackerman 78, Hansen 83,

Taylor 82, MoCormack 83]) which cannot be ignored because they contain

innovations which have merit. Some of the hardware has been developed

in conjunction with software. VAL was designed for the data flow

architecture; Occam in being designed in conjunction with a

Ntransputer"; a bit-slice machine has been constructed to efficiently

implement Modula-2, and so on.

Why then should the proposed architectural development be

continued? Because the new languages can be efficiently implemented

upon it, and because the new hardware can be used to efficiently

instantiate compute bound functions. The D language, and supporting

architecture, is a catalyst for new languages and application specific

hardware architectures, and a structure which facilitates the reliable

exploitation of the languages and hardware once they are developed.

It can serve as the foundation for a great many things.

.47* .:

120

V% ~~::WN. *.%.*...*. *-V.



*1 %

:b-N:

Ackerman, W.B. and J.3. Dennis. A - A Value-Oriented
..,or.th LafLsimsa., Priliminary eference Manal. MIT
Laboratory for Computer Science, Sept 1978.

Dal 3. et al. *The 1316000 Family -- Advances in Architecture &
Hardware,' Qnutm, U1 1, & . L: p58-67 (June 1982).

Barker, J.R. "dill Biochips Create Computer Peripherals
Revolution?.* RL UtjI Dsiga~: p18-20 (December 1980).

Buri, M.N. and C. Christensen and T.G. Matheson. *Ple:
Automatically Generated Microcomputer Layouts,' Prceaongs gt

Ia Cnenc ItCarnatiu a 1fl fg mputet rn coaXu~r 22,1 -.
New York: IEEE Press (October 1983).

Boute, R.T. 6S1mplifying Ads By Removing Limitations," AMI
A-.1ma. hil 1Ila 2: p17-28 (February 1980).

Cole, A. J. Maeeooronessors (Second Edition). Cambridge:
Cambridge University Press, 1981.

Dennis, Jack B. *Data Flow Supercomputers,' Computr.. 21. . jo
.a.: p48-56 (November 1980).

Director, Defense Advanced Research Projects Agency (DARPA).

tru P L=n Q gt =1 AD Prgraamine Lau=&,
(Preliminary version for public review). Washington DC:
Pentagon Rnm 2A318, 1980.

Foster, N.J. and H.T. Kung. 'The Design of Special-Purpose VLSI
Chips,' CoVuter.o Yl .J3, I. 1:p26-40 (January 1980).

Ginsberg, Myron. 'Numerical Influences on the Design of Floating-
Point Arithmetic for Microcomputers," Procedngs gr the liZ.
1nnua'. Rocky Mwaoea= joua n = Microconuters AM . =
Ja21.. p24-72. IEEE Press, New York, 1977.

Hanson, Per Brinoh. 'Systematic Programing in Edison," MI

Journal- - &l ho : p84-88 (Sept-Oct 1983).

Boare, C.A.R. 'The Emperor's Old Clothes,' Byte., U1 N il.I:
p414-J2 5 (September 1981). (ACM 1980 Turing Award Lecture:
reprinted from February 1981 Communications of the ACM)

'V Ichbiah, J. D. et al. 'Preliminary ADA Reference Manual," A2M
g 2m o YLJ .&1. Na i L=rt A: (June 1979a).

Ichbiah, J. D. et al. "Rationale for the Design of the ADA
Programing Language,' AM ZI&23na NoLtices i. 1V. No f
I: (June 1979b).

121

**I* .~** 5. ..... " . .,....... ....... ..... ... ... . ......... ., .-... ,-..,"*;.. .. . .. . • •. , .* %. - .. -- - . . . - --



Intel Corporation. Introduction te Aa A a Zrh ire.
*. Santa Clara CA: Intel Corporation, 1981. (171821-001)

Kartashev, S.I. and S.P. Kartashev. "Dynamic Architectures:
Problems and Solutions," C Io.1. J o Jj: p26-40 (July
78).

Kernian, Brian W. and Dennis 14. Ritchie. T=e Q grorahing
LARgaa. Englewood Cliffs New Jersey: Prentice-Hall Inc,
1978.

McCormack, J. and R. Gleaves. "Modula-2, " BYTE. VL ., 11 A:
p385-395 (April 1983).

Morrow, Joan. "News Breaks", Z28, f o1 28LL. lU: p15 (15 Sept 83).

Von Neumann, John, et al. L= Yn NeuLmn,. Cogeted Works! rot

1, DAlAa 2L Comwuare, , jhft 2L AUto--rA ia Numal
Ana1.z &, Edited by A. H. Taub. New York: Pergamon Press,

1963.

Ostroff, Jim. "BIOCHIPS," Ventue. February 1983.

Patterson, D.A. and C.H. Sequin. "RISC 1: A Reduced Instruction
Set VLSI Computer," P.ocsenga. L hA. Zthe AnnuaIL Sympaium

Computer ActeUre. IEEE Press, New York (May 1981).

Richards, Martin and Colin Whitby-Strevens. liPL: jh. th angUa
and ts compiler. New York: Cambridge University Press, 1982.

'-. Ritchie, Dennis M. et al. "The C Programming Language," =T 9h ,

9vat., X&C U vo urnalJI 57, fa 1. ZZ :I.: p 1991-2021

i* (July-August 1978).

Saith, B.J. "A Pipelined, Shared Resource MIMD Computer,"

Proceings. gt I"b J=Z~ int rnational Cnfregeea = Parallel.
• " .inUaJ. p6-8. New York: IEEE Press, 1978. (EHC 182-

6/81 /0000/0220)

StOy, Joseph E. Dej.tfl vatJ&a1 The Soottz-tracbhev
Anzga. t Progrmming laAgUaj Theorv. Cambridge MA: MIT
Press, 1977.

JStritter, 3. and T. Gunter. "A Microprocessor Architecture For a

Changing World: the Motorola 68000,' Comnu Vor. Yal .12. o 2:
p3-51 (February 1979).

Taylor, R. and P. Wilson. "Prooess-oriented language meets
demands of distributed processing," Zj agt L. .5.& IQ
2: p89-95 (November 1982).

* Conference Preview: ICCkD '83," L I &si : p16 (July/August
: % - 19 8 3 ) •

122

*'.'*.. . . .. * . . ". ** ". . . . .* " '''.*~5 . .. . "-" .. .. "" *.' .4 *_'" "" ," "' ... " , ", "



*OI@FILES: *O*

<3torage-fil.>

<actorjfile>

<bundlej'ile>

112



*"*STATE DEFINITIONS: *'

<state_tile) ::x

state <3tate~fjie.jaae><jterm>

<linkage)

(t
* <scalar..detiuition>

<StruOture...deinition>

<scalardeiiition> : :a

<scalar_naze> :: <int>*..<int>$ <iterm>

<structur...detinition> ::a

<3truotnAaze) :: (*<oomp)Qteru)#

I <ter.>

<coup> 2:

<objeot..decl>
$($ (*payuboi> # ) )

(4)24

5-7



.7- 7. -7,~.9

~'* ACTIVE DEFINITIONS: '**

<actorj'±le>:z

actor <actor.file...au.>lterm>

* (linkage>

(<op..deol>
<tunat-jiecl> )

<block)ltera>

C).

<op..decl>::

<op..Aame>:: in <class>:(
<declarator>, <declarator>
<declarator>

'I <declarator>
)<lterm>

out <class>*. (declarator>(lteru>

<1unot~jlecl> ::a

<funct-..ame>:: $4n <class>: <declarator><lterm>$

- .. ~ $out <class>: <declai-ator><lt erm),

.125



*0I6I* STORAGE DCARATIONS:

(3torage..file) :
storage <ztorage.J±1 e~jame><lterm>

<1 iwkae>

#<object..del><lteru>#

<objeot..decl>::

<class>: ($#<declaration>,#1$) <declaration>

<class> ::x

<object..class>
<file..ctass>

<objct...la3s> : :x

<3calar.Aafle>
<3truture..fame>

<functAaae>I
$<lnaae>

<tilecla33> ::a

stateI
actor
storage
bundle

~,~ ~ <declaration> :is

<declarator> *u<expr>$

<declarator> ::w

* . <object..pae>
IRpointer-pwae>
<arraypum>[C$<int>$*3
<op~jlame> <cla86>
<funct..ame> <class>I

126



*****e BLOCKS: **e**e

<block> ::z

$<header>$

(<linkage>

#<line>#

'1 )

<header> ::a

<label>: $<selectorXlter>$

<selector> ::a

?
<ezpr> I
?<expr>

<line> ::a

S$<guard>$<stateuent>$<contin>$<lterm>

<guard> ::a

<exPr>$

<3tateueat> ::a

<expr> I
return $<ezpr>$ I
<block> I
nev <pointerjnae> $= <expr>$

<contin> ::a

* I$<label>$\ I
$<label>$.. I
$<label>$;
*<label>$

i

a 127-

sq.' .,¢'',. .'-' '.' .- ".-" .- ''-. ... '



**~*EXPRESSIONS &LOGICAL NAMES: "'

<.xpr>::

<literal>

<qliteral>

*<lnaurn)

<lnmeo>

<ezpr><opjiau.)

$<expr>$<op~uame><expr>

(<*xpr>)

<funotane)$<expr>$

accept <funot~name>

null

<memoe> ::z

<object~uaue

*f*<lnau.)

<l am. >$[($<int>$) ]$

<filejiae)

<iria..)'<memoe>

.57,



**~*COOPERATIVE FILES: * '

<bundlej'±le> ::z

bundle <bundle.fileAame)<1term>

s-I- <linkage>

W~il " .aue><ltez'u)*

<filejiame> ::a

<stat...filejuaa.>

<actoz_ileAame>

<Btorage-jile-ale>

<bundlefil " ame>

***Off# LINKAGE: ***

<linkage> ::a

$share ($#<ril...naa.>g #$) <fil...naa.>lterm>$

$rename #( <laine>

% ...

-~ 129

-. ~~~~~~~ ~ ~ ~~~~~~~~ I A-1~* 5*55.55*5.. ,* .. ~' ~%.*%



- ~ h ~ ~ b~ J 1.* * .h' g~ -*.;V ~ i~- ~T OK E N S :4-

-- Rpybo>#<te*

< t : dgi>I-#

<cloent ::a %<mbol>* <le>

*#<syubol>#"

<objeot.naze> ::a <nan.>

<literal>

<name> ::a <alpba>$ftohav>#$

<literal) ::a (<digit> I
)$#<char>#$

<funot-ae> I
<acalar~jaa.> I
<structiaae>
<point~riaMe>I
<arl'ayjuam>I

<op-pame> : :a $<oper$<oper>$<oper>

413



j . , r . _ . ,. , : . -, . , , . _ .- .,. 4 . . ,.. . . . . - .

I.uee SYEOLS: i*****

<symbol> ::z <punct> I
<oper> I
<char> I
<format>

<psymbol> ::a <punct> I
<oper> I
<char>
<vspace>

<punot> ::a

" I ' I' II ? I# $ I \ .

<oper> ::z
I I" I• I II I III III i& 11 I<1>1.

<char> ::a <digit> I
<alpha> 1

I/ <digit> ::a 0 1 121 3 14ll 56 17 1 81 9

<alpha> ::a

AIBIC D IEIF IHI IJIKILIMI
0 P IQ IRIS T IU IVW I I ZI

alb Icd le Ifghi il jlk 111.
nla pqrlslt lulvlvlzlylz

<format) ::a <wspace> 1
<ftru> I

<lter

<wspace> ::a <iT>
<SP>

4<iterm> : : <I'<P> I
<11'> I
<I'

<ttezI> : : 1

131



r.

.*45*0 KEYWORDS: 6*5o1

<keywords> ::z

accept "ace 1 1 - - - actor def

actor " act 2 . 1 - - file type

bundle -'bun 3 . 2

copy "'oop 11 1 - linkage

in --:in 5 2..

new "now 6 3

null nul 7 4.

out " out 8 5

rename "'ren 9 • • 2

5.., return I ret 10 6
5,.

share "sha 11 . • 3

state "'sta 12 3

storage "seto 13 4 .1

6 4 3 :13

'1

5.o.

~132

,- ,...'.,'o. ,-,,-~~~...,*5 . ?' . &- *. ,, ..... ,5 . . *-. ., ./ . '



Richard Jennings came to AFIT from a four year tour at the Air

Force Wright Aeronautical Laboratories, where he was assigned

to the Hicroelectronics Branch of the Electronic Technology
Division of the Avionics Laboratory. There he managed
contracts with industry to design, fabricate, and test
integrated circuits as well as contracts to design
architectures which would effectively leverage this technology
into a decisive battlefield advantage. Over the first two
years of his tour in the Microelectronics Branch, it became
clear to him that the full capability of the emerging
technological capability cannot be fully exploited with out
anything less than a complete and fundamental reconsideration
of how computers are put together and used. While at the Lab,
other work prevented the maturation of a cogent argument to
substantiate those claims. This thesis documents his efforts,
while at AFIT, on this problem.

V Permanent Address: Belfast, ME 04915

133

'p

'p €. ' . ""' .' " S',. M. . € &. ,*'' . ' *€ **,*"."Y' ' , -A - .. < -:. &... ?-



SECJRITY CLASSIPICATION OF THIS PAGE

.1 JREPORT DOCUMENTATION PAGE
REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

-_T. T ED

2& SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

-. 'CT O AIAPPROVED FOR PUBLIC RELEASE;
, 2b.z 09CLASSIFICATION/OINGPIAOING SCHEDULE DISTRIBUTION UNLIMITED

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GA/EE/83D-1
" NAME OF PERFORMING ORGANIZATION 5b. OPPICE SYMBOL 7. NAME OF MONITORING ORGANIZATION

,.---. School of Engineering AFIT/ENA

Sc. AORESS lCity. Stte md ZIP Cede) 7b. ADDRESS ICity, S te and ZIP Code)

Air Force Institute of Technology
Wright Patterson AFB, Ohio 45433

S o.. NAME OF FUNOING/SPONSORING lb. OFFICE SYMBOL 0. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (1p i ble)

8. ADDRESS 1City. State and ZIP Code) 10. SOURCE OF FUNOING NOS.

PROGRAM PROJECT TASK WORK UNI-
EL LEMENT NO. NO. NO. NO

11. TITLE (ineiclde Security Cmlaificlation)

A Candidate Proaramming Lanxuage
12. PERSONAL AUTHORISI

enni 3. Richard K.
& TYPE OF REPORT 131. TIME COVERED 14. DATE OF REPORT V'Y.. . Day, 1S. PAGE COUNT

FMS Thesis PROM TO 1983, December 143
I. SUPPLEMENTARY NOTATION .,.:

VT E.
17.,, COSTI oE5cki and Prof ..SSIWIC1

IL SUBJECT TERMS (Coiue.. on nuerne if xoenam W& " nA*..oIELO GROUP SUB. GR. Computer Architecture, Direct ftT8o A,-VLSI,
04 Language Design, D.

* 19. ABSTRACT (Continue on feers iff necenoy and idan lith by Nock nuoIbei

Conventional computer architectures are obsolete. They are performance limited,
unreliable and hard to program. In addition, they are able to make very inefficient
use of the currently available microelectronic technology.

This state is perpetuated by the attempt to seek new languages, new operating
system, and new hardware independently; the desire to maintain compatibility with
existing systems; and the desire to design with integrated circuits (VLSI) as tiny
TTL. This mold is broken by the description of an architecture in which the
language, software, and hardware are all designed synergistically, constrained only
by the characteristics of the users of automation: people.

A candidate language is described and compared with C. Some characteristics of
a program support environment are suggested. The hardware structures implied by the
proposed architecture are described. Finally, two examples are provided which

. demonstrate the language.
.120. osTRIBUTION/AVAI LAILITY OF ABSTiIACT 21. ABSTRACT SECURITY CLASSIFICATION

..-y '.#4€ 1I I CUN LIMITI CC SAME AS RPT. 0 OTIC USERS C UNCLASSIFIED

22&. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OPPICE SYMBOL

Harold C. Carter, Lt Col USAF ,Includ .Ao Code) AFIT/EN%

00 FORM 1473, 83 APR EDITION OP JAN 73 IS OBSOLETE.

SECUR ' S, A

If.e ' 
.^ 

I



. Il
FIME

Fi Jw

ai
*T

Ao

"Ilkw .s


